AD-A152 215 AN AUTONMATED/INTERACTIVE SOFTHARE ENGINEERING TOOL To 174
GENERRTE DATA DICTIONARIESCU) RAIR FORCE llST 0F TECH
MRIGHT-PATTERSON AFB OH SCHOOL OF ENGI..

UNCLASSIFIED DEC 82 AFIT/GCS/ENG/84D-29 /ﬁ 9/2

'ﬁ'n‘f. R

- ..' v
‘a ‘, ‘l i

————

T

o

Il
L

lllll-

22 s

I‘E

28 Iml
™ ug
= 12

22

e

llLs

5

CTPFRE

fe

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREAL OF STANDARDS 1062 A

T Ty

REPRODUCED AT GOVERNMENT EXPENSE

AD-A152 215

AN AUTOMATED/INTERACTIVE SOFTWAREL
ENGINEERING TOOL TO GENERATE DATA
DICTIONARIES

e

THESIS

Charles W. Thomas
Captain, USAF

AFIT/GCS/ENG/8B4D-29

= _DTIC

on approved v
E‘:“m“ | FlecTERy,
. APR4 185

distribution is unlimited. L

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY V A

AIR FORCE INSTITUTE OF TECHNOLOGY

ONC FILE COPY

Wright-Patterson Air Force Base, Ohio

gs 03 13 181

................................

AFIT/GCS/ENG/84D-29

AP I

AN AUTOMATED/INTERACTIVE SOFTWARE) _
ENGINEERING TOOL TO GENERATE DATA Dl
- DICTIONARIES e
bi THESIS f

Charles W, Thomas

- Captain, USAF ey g

& AFIT/GCS/ENG/84D-29 i AN

ﬂ. _TE

[1935 :
b .

. e e B -
Approved for public release; distribution unlimited -
e g T o PP) 1: AP - .s; N '..~"' > .'}:"m"s" RN G A';'JL;:;"--": " . \'. .- s.:' .;":L‘g.:‘k -;;.fg.l

T Ty

GENERATE DATA DICTIONARIES

THESIS

P ———
o

of the Air Force Institute of Technology
|o Air University
In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science

— va'v:T" _v"-..n» ‘fon o -
ARSI

®

Charles W. Thomas, B.S.
(d .
i Captain, USAF

December 1982

Approved for public release; distribution

- e

............................

AN AUTOMATED/INTERACTIVE SOFTWARE ENGINEERING TOOL TO

BN

Presented to the Faculty of the School of Engineering

',f:::\\
¢ Che, i]
SN e, O
-!
P
Accession For e —
NTIS EaRE D
pTIC T .
Unore v
Jusy
By- . ,
pistritoite
Avaiieniid
A
Tivt SR
| |
\ t i
U{ L |

unlimited

R R e i ow i A R S S i S i S JUGE it Sae mhe,

PREFACE

4

This report is the result of my efforts to accomplish a - j
design and initial implementation of an automated and
interactive software engineering tool which generates data iifi
dictionaries., The resulting implementation of this thesis
investigation 1is an interactive data dictionary gencration
tool which accepts and maintains data dictionary information
in éupport of three methods of software representation;
SADT, structure charts, and code. A fourth sofitware
representation, data flow diagrams, is not supported in the

initial implementation of the tool, however, all necessary

design work for its inclusion in the tool was accomplished, If&

This initial implementation of the data dictionary o
. - o
'Y J

generation tool represents only a partial realization of the L i

potential of a fully automated data dictionary generation T

tool. The last chapter of this report contains i?&i
recommendations for future development of this tool. >~»j
I wish to express my sincere appreciation to Dr Gary B. ;
Lamont, the advisor of this investigation, for his guidance i
and insight throughout the duration of this effort and Dr 1

Thomas C. Hartrum for his assistance in the development and
testing and evaluation of this tool. I also wish to thank ffi}
Captain Pat Lawlis for serving on the Lhesis committee for

this investigation.

s ,—.—.,~.-r‘v v yov v—y‘vvvw-f_
. B R B R
Jao PR

A

L
) e
AT O
Lo . o
PSP RSV SR U Y N S

ii

- ot
le
. 4
i
L Table of Contents
L i
{] Page ‘
k:- Preface L] L] L] L] . L] L] L] * L] L] . . L] L] L L] - L] L] [] L] i i
List of Figures . « ¢ o« o o o o o o o o o o o o o = v
AbStract . o s & o ¢« 4 s e o s e e e e s 4 e e e s viii
; I. Introduction . ¢ o o o o o o o o o o« o o o 1 _
Thesis Objective . .« « ¢« ¢« ¢ o « & o o @ 1 j
- Background . . .« ¢ ¢« 4 & 4 4 e 4 e e e . 1
ol SADT v v v v e e e e e e e e e e e e 5 ‘
Structure Charts And Data
Flow Diagrams . .« « o« & & o o o o o o 7
Data Dictionaries . . ¢« ¢« « o o o o o & 11 {
Problem Statement . . « & o « « o o o = 16
% Scope of Thesis Investigation 16 -
’ 4
. Approach . .« . « « v ¢ ¢ 4 o e e e 0 . 16 -
:t II. Requirements Definition + « . « & o . 19 h
L' Introduction . « « ¢ ¢ v ¢ ¢ o o« o o o o 19 .
= Objectives And Concerns . . « . « « . . 21 ufi
ni (5 Functional Model For The Data -
: Dictionary Generation Tool 40 1
III. Preliminary Design . .+ « ¢« ¢ ¢ o o« o o o« o 47
: Introduction « . . & « ¢« ¢« ¢ ¢ o+ o o o« 47
= Design Stratesy « ¢« « o o o o o o o o 49)
Data Dictionary Information "J
{ Content . &+ « o o &« o o o o o o o o o 55
> Database Design . .« . .+ ¢ ¢ o ¢« o « o 70
v Data Dictionary Database . . .« .+ « « .« & 84
. Database Design Alternatives+ & 142
& Data Dictionary Generation
*. Tool Structural Model . . . « + « « . . 152
1
! IV, Detailed Design . . o o v ¢ o o o o o o o o 164 :}
1 Introduction « « « ¢ & o o o o & o « o 164 R
= Algorithms For Selection of -]
) Dictionary Opecration Modules 166 B
#, Add Entity Definition . « « « & o« « o & 168 1
‘ Retrieve IBntity Definition 1-?
N Algorithms « . . . e e 170 S
. Print Entity Definition Algorithms . . . 173 T
- Delete Entity Definition Algorithms . . 176 .y
T lModify Intity Definition Algorithms ., . 178 '“i
é. List Entity Names Algorithms . ., 180 i
3 o
o iii AN
' o
F' "
| =

V. Implementation . . & & &+ + &« & o o o o o o o @ 183
Introduction o o . 0 . 183 y
Sclection of Databasec
lianagement System . o o +« + ¢ 4 & 4 o+ 4 133
Choice of Implementation
Language .+ ¢« o v o ¢ o o ¢ ¢« 4 e e e e 188
Implementation of Dictionary)
Database . o+ & v ¢« v v 4 e e e e e e e 190 '
Implementation of Data Dictionary ' ')
Generation Tool Functional HMHodules . . . 164
VI. Conclusions And Recommendations 2006
Introduction . . « & v & ¢ & o o & o o 2006 |
Design Summary . . . & « ¢« « ¢« o o o o 206 .
Implementation/Testing Results 207
Recommendations For Further :
Developement . .« &« ¢« ¢ « o &+ o o « o o 209 :
Appendix A: Requirements lodel Data . i
Dictionary Generation Tool 211 '
) E
Appendix B: Structural Model Data .
Dictionary Generation Tool 226]
Appendix C: User's Manual For Data]
Dictionary Generation Tool 267]
- . 1
Bibliography . « + & & o ¢« « & & « « & & o « « . . 281
Ty
L X7
& - .4
_l
:
-
]
L
O
a
1
€
iv N

. - o0 & T RS L BT S GRS R S
T T T e T N N UL MR N T Tt et e M
PP I NI LI R INOPILIAIPLLre JRDACIRLA IRI, TR TR AR W T W Y RGP T AL A T S D S AR ST

v - e v T T T O NI A s et S R T ~ e T I R e i S R I T Al G e

".‘l'frrl e
E IR

)
List of Figures '
j Figure ' Page]
;f 1. SADT Activity Diagram e e 7 :d
:k 2. Structure Chart Diagram « « « « & 8 ;311
l 3. Data Flow Diagram ¢ ¢« ¢« ¢ & o + « « 9 :
4, Entity, Attribute, Relationship Structure . . . 28
5. Examples of Entity, Relationship,]
r; Attribute Constructs . . . & « &« 4 « o o+ & & 30 4
6. Top Level Data Dictionary Generation Tool . . . 41
7. Obtain and Use Data Dictionary Information . . 42 -
8. Generate Dictionary Inputs . -
From Software Representations 43 .
9. Perform Dictionary Functions + « « .« . 44 g
: 10. Software Representation Action ;;;J
ii (® Entity Information Elements e e e e e e e e 58 |
_ 11, Software Representation Data | -f
o Information Elements . . . « + « + & « « +« « & 59 ;
h 12. Example Relational Table . . . « + & « v « o . 73 ; 4
o)
: 13. Use of Keys In Relations 70
14, Normal Forms 79
15. Transitive Dependence« .« . « + +« . . . 83]
16. Description Kelation+ « + « « ¢« « + « . 85 f
17. Description Relation Example 80 ;
18. History Relation 87 i
19. History Relation Example .,« « + .+ . 88 1
20. Logical Decomposition Using :
Data Flow Diagrams . . . « ¢« o o « 2 o s o o = 90
21. Hierarchy Relation o v e e e 91 -
v

- et . . R N . Y L. . R IR L P N s . IR
. L N ATIAL N 0 . . BRI ~ ' A A I I
PR L R SR R W P ST W P ST SR LRSS : PR AP I S O S N S it ShU N S S SLI My PSP LA SR U Y Wl Y Wt WUR WA SR SRR SV HRSE i WO TRT SRt |

St s e = mmcw s e »te e wmtec tweR T LTLT . vy

. - R T T T Y T T T T T Y Y T T T
i ;.,4
i
22. Hierarchy Relation Example 92
23, Reference Relation« . « v ¢« & ¢« « « o . 93 13
] 24, Ref_Type Attribute Values . . . « 95 ;
25. Alias Relation + & ¢« + « « . . e 96 {
26, Alias Relation Example « « & . 98 ,i
l 27. Value Set Relation o e e e e e 100)]
28. Value Set Relation Example 101 f
29. Algorithm Relation . . . « « « « « « . . . 103 4
; 30 Algorithm Relation Example 103 '
31, Activity Relation e e e e e e e e e e e 104
32. Activity Relation Example o 105 4
’ 33. Activity IO Relation . . . « « + « veu o « . . 106 '
34. SADT Activity and Data Item Interaction . . . 107 ?;?
‘35. Activity_IO Relation Example , , , , , 4+ + , 107 f j
I 4o 36. Data Item Relation . . . & & e v o & & & « o« & 108 : 1
37. Bubble Relation e e e e e e 111
. 38. Bubble Relation Example 112
- 1
. 39. Bubble_IO Relation . . « ¢« « « « + « . e 112 1
40. Bubble_I0 Relation Example iI1l4 ﬁ
41. Data Flow Relation 115 -’i
’ 42, Process Relation . . ., . e e e e e e e e e 117 1
43, Process Relation Example 118
44, Process_I0 Relation 119]
' 45, Class and Direction Attribute Values . . AN 121 5
-_ 46. Process_I0 Relation Example! 123
) 47, Structure Chart Diagram . e e e e e e e 124]
4 -
G vi
)
e e e e e e e e S e T e e S ;.;iﬁ;;;:ifj

LA Se e e I Ji

e ————————————— r———
]
i 3]
48. Process_I0 Relation Example 2 126
) 49. Pr_Call Relation v v & v o o « « « . 127 j
“ 50. Pr_Call Relation Example 128)
51. Pr_Passed Relation « . . 128 lﬂ
52. Pr_Passed Relation Example 131
l 53. Parameter Relation 132
54, Module Relation e e e e e e e e e e e e 134
55. Module_IO Relation + « « « « « . . 136]
s 56. M_Call Relation © e e e s e e e e e e e e . 138
57. M_Pass Relation e e e e e e e e e e 139
58. Variable Relation . . v « v o o o o o v o o . 141) :
’ 59. Data Item Relation Design Alternative . . . 146
60. Sample HIPO Function Chart 153 -
_ 61. 1IPO Diagram Example e e e e e e e e e 153 ' j
a 62. HOS Function Specification . «+ . « . « « . . 154 .j
f- 63. Top Level Structural Model 155 ;
5. 64. Perform Data Dictionary Functions 156 ::
. 65. Selection of Dictionary Operatior 158 i
66. Input Entity Definition 160 E
| 67. Input SADT Activity Definition 162]
’ 68. Main Relations For Printing Entity Definitions . 174 1
69. Create Relation Example . . . « « « « + « . . 193 .
>]
|]
=
’ - b
: S
vii w
..- .‘<
- s
e e e e e 2 e e e e e T

r—r———— — e o L —

AFIT/GCS/ENG/84D-29

Abstract

The purpose of this investigation is to design and

develop an automated/interactive software engineering tool

which gencrates data dictionaries. This tool is provide the

user with an interactive data dictionary tool to support the

development of software in all phases of the software 1life

cycle. The tool supports data dictionary information for

specific methods of software representation. The dirnitial

implementation of this tool supported . four methods of

software representation: SADT, data flow diagrams,

structure charts, and code. The requirements definition for

‘o the tool includes a discussion of the objectives and
concerns associated with the tool development. Dat; flow
diagrams are used to formulate a requirements model. The
) preliminary design specifies the type of information to be
-
t; contained in the data dictionary for ecach of the methods of
L: software representation supported and database design
@ required to maintain the data dictionary information. The
E' structural framework of the application software which
Ei provides the 1interface betwecen the tool wuser and the
]
’ dictionary database 1is specified and structure charts are
; used to model this structural framework. In detailed
; design, algorithms are developed for the tool's application
°

software.
: viii
3

e e

LI PR SR IR S RN T e T . o . '.. . LR) . '.1' '~- - - . ~ fatetay . -
Al e s N T Wil WA LI A ST Yl WAL VAT WAL S N IPRE SR SR D P A

o

Py

T W RO G T G SR G 7RO N S

‘e 'a s 'a b il

2

o ~

T UL PU ML T LR P Y
......

The dictionary database is implemented through the wuse
of the INGRES database management system. The application
software 1is .oded using the C programming language. The
application software interfaces with the dictionary database
by means of embedded EQUEL (INGRES Embedded Query Language)
statements in the C language source code, The tool was
implemented on the VAX 11/780 computer wusing the UNIX

operating system,

ix

.......
.......

L N I ORI TRl TR T R Tt AT LRI W A AP S L. - DS LN
B N T i N L A B e D N P e N L e e A R A L N

'y

I

L
PSS WP T

DY q."-‘ \" . ..'-"~ LAY - T e Tt Lt -
[N IET R A R 0, A S N a0 SRR e W0 NP S0 B PN A

AN AUTOMATED/INTERACTIVE SOFTWARE ENGINEERING TOOL TO
GENERATE DATA DICTIONARIES

I. Introduction

Thesis Qbjective

The objective of this thesis investigation is to design
and develop an automated/interactive software engineering
tool which translates the information contained in graphical
software engineering techniques into data dictionaries.
This tool will employ a combination of user interaction and
machine analysis to extract the required data dictionary
information from the graphical representation. During
machine analysis the tool will "attempt to detect any
specification errors detected in the graphical
representation and bring them to the attention of the user.
This tool will support the development of software through

all phases of the software life cycle.

Background

Advances in both the application and affordability of
electronic computer systems have greatly increased the
demand for reliable, cost efficient, and maintainable
software. Unfortunately, our inability to produce quality

software products in a timely and cost effective manner has

N N AT U AL R AR A . o S T S L
WA LT " P PAD SR OTIL VL LR ST S S R e T T S T R RTINS PR P

At o T oim w e =W —w W —w W vy ——

led to a situation which many people refer to as the
software crisis,

For the computational power of the computer to be fully
realized, we must place increased emphasis on improving the
methods and tools used in software production,

The problem of the 1980s is different. Now
we must reduce the cost of electronic solutions:
that is, reducing the cost you incur in using our
device to build a product. Solving this problem
will require a shift from the component integration
of the 1970s to concentration on system level
integration in the 1980s.

We can now talk about putting the power of a

mainframe CPU on a single chip. This buys vyou
nothing as acustomer, howvever unless you can use
that powver. lHlardware is commputing potential; it

must be harnessed and driven by software to be
useful. (1:22)

Software production problems can best be resolved by

considering software development from a life cycle point of

view. "The complexity of a large software system surpasses
the comprehension of any one individual. To better control
the development of a project, software managers have

identified six separate stages through which a software
project pass; these stages are collectively called the
software development life cycle" (2:198).

The definition and nomenclature of the six phases which
constitute the software 1life cycle vary from author to
author. For the purpose of this investigation, the

following is used to define the phases of the software life

cycle: requirements definition, preliminary design,
detailed Design, implementation,integrativon, and
2

I T
P W WY]

P

A:.‘_"

e pe—r — R T R TR TN TR TR R—p——

maintenance. Most versions of the 1life cycle 1include a

phase which is dedicated to testing, validation, and
verification. In this paper, testing, validation, and
verification will be considered an integral part of all

phases of the 1life cycle rather than as a separate and

distinct phase.

{ The purpose of the requirements definition phase is to

r‘ clearly define exactly what the proposed software project is
»

b to accomplish for the user. The primary emphasis during

this phase is to define as precisely as possible the exact
function or functions the software project is to perform,
i This 1life «c¢ycle phase will require a great deal of
interaction between the ultimate user of the software and

the software designer.

R

. . During the preliminary design"phase, the infermation

Ef obtained during the requirements definition phase is used to f;?

iﬁ determine the structure and framework of the software. "The ;
preliminary design step is an attempt to develope software

ﬁ beginning from the top down. Information flow or structure,

; determined from requirements, becomes a tool that leads to

; an overall representation of software" (1:132). In this

: phase, the software project is broken down into modules

; which represent particular functions. These functional
modules are further decomposed into sub-functions to obtain

rf a hierarchial representation of the software project.

'k During the detailed design phase, the functions defined

PR T P N SPE JPETRRCI D R . S e e T e . K ORI

-~ - ..’ ‘..'n -'n"—-n".'-~- - o« T et et .Y - ..'.'.-‘- - . - . - C e te T .
PP PN, SO N W & TR SR S L RO PREPL TR P8 P S N W S WY v)

in the preliminary design phase are further detailed and
decomposed ., The functional modules are converted into
specific algorithms which perform the function. "Detailed
design provides a blueprint for coding. With the use of a
design representation that may be graphical, tabular, or
textual, a detailed procedural specification for the
software 1is created, Like the blueprint, the detailed
design specification should provide sufficient information
for someone other than the designer to develop resultant
source code" (1:133).

The implementation phase represents the actual coding
of the software. Utilizing the detailed‘design information,
the software project 1is translated into a particular
programming language.

During the integration phase, the project software is
installed on the target hardware. Extensive testing will
take place during this phase to ensure that the software
meets all specified requirements.

The maintenance phase of the life cycle consists of
activities involved in the actual use of the software,.
These activities include the detection and correction of any
errors and the modification of the software to meet any
changing usef requirements,

In order to support the development of software through
the various stages of the life <cycle, numerous software

engineering tools and methodologies have been developed.

Ao S B S i Ny ” hdiase dhun it enh g i s o

A

2

!

’.
t
»

E

The aim of these efforts is to improve our ability to
produce cost efficient and reliable software products and to
help control the software crisis.

While there are many existing software engineering
tools and methodologies in use, four in particular have
gained widespread use within the Defense software community:
Structured Analysis Design Technique (SADT), data flow
diagrams, structure <charts, and data dictionaries. The -
first three tools listed above are graphical techniques used
in the requirements definition and design phases of the

software life cycle.

"SADT (a trademark of Softech, Inc.) is a systems .
analysis and design technique that has been widely used as a
tool for system definition, software requirements analysis,
and system and software design" (1:120). SADTs consist of a
graphical representation of the software project which R
enhances the anralysis and communications process which is so
critical during the requirements definition and the design
phases of a software project. "SADT is a technique that
enables people to understand complex systems in a complete
and precise manner, and cnables them to communicate their
understanding” (3:A-2). The application of the SADT ;?:

technique results in a model which describes what functions

C '.‘ ‘.. '... S -~ ‘. R o AL "- "".1) ". T et e - D) ~ .
. . - NSNS . N - e e . . = DRI RN A '..‘. ST, T B N
Alentid e acatal o ata taln Sa e ol PP RS I S SV AU S S T IR R T S UL W DAL Y SO

a system must perform, specifies how a system is to be
designed and constructed, and explains how a system is to be
used and maintained.

The SADT model consists of a series of diagrams that

decompose a complex problem into its component parts. The
initial diagram will present a general or abstract
description of the problem. Subsequent diagrams will

decompose the problem into smaller less complex components.
As the decomposition process continues, the level of detail
illustrated by the diagrams will increase. This iterative
process will <continue until a level of detail is reached
where further decompostion is not possibie.

The SADT diagram consists of boxes and arrows which
illustrate the components of a system and their relationship
to one another. "The notation employed is simple: boxes
describe functions and arrows describe interfaces between
functions. Diagrams, composed of boxes and arrows are used
as the framework for expr ssing whole units of a system"
(4:31).

The direction of the arrows and the point of attachment
of the arrows to the box have a specific meaning in the
semantics of the SADT diagram (see figure 1). "If a box
represents an activity, then input data (on the left) are
transformed into output data (on the right). Controls (on
the top) govern the way the transformation 1is done.,

Mechanisms (on the bottom) indicate the means by which the

-

®

T T Y e T T T T T
'v -

F T T T T e T T
-‘ " .

| |

| |

activity is performed. A "mechanism" might be a person or a

committee or a machine or a process”" (3:45).

CONTROL

INPUT ACTIVITY 3 OUTPUT

MECHANISM

Figure 1. SADT Activity Diagram

"SADT diagrams show both the things (objects or data)
and the happenings (functions or activities) in a system"
(3:42). Two separate types of diagrams are used in the
SADT methodology. The activity diagram uses the boxes to
represent activities and the labeled arrows constitute the
input data, output data, control information, and
mechanisms. The data diagram uses the box to represent a
data item and the labeled arrows to represent acitvities

involving the data.

Structure Charts and Data Flow Diagrams

Structure <charts are a graphical representation of the

sub-functions or modules of a software system and their

D T L A PR B S S

e e e e e e et e e T, e e et T e e . R e S T IR Y
I . ~ b ., S k) o e s I VA Sy /A i A VAN VL S S S I S VA LA A LIPS AP LI AP =

T P T A R T
ERCWAE VRIS AL W WA R R SR)

A o
o R i i aa Aals L

 m e &

Lt M aa

- a'a ala.

—~ — T ~ . - —— . - y RIS Sk BN AV S peun s s sl ae anac

»

]
M |
[}
R
-4
relationship to one another. "Structure charts were .
originally developed by Constantine et al; 16Y to specify Y
. i
modular characteristics of software during design" (5:1087.)
The graphics used in structure charts provide a <clear ;;
picture of the interaction between modules and the basic R fj
. 1
structure of the software system (see figure 2). "Structure
charts can be drawn in several different ways. The approach
proposed by Constantine utilizes three basic graphical forms . J

1(the rectangle, used to contain a module or module
descriptor; 1

2(the vector, used to highlight interaction between
modules (usually a call);

3(the arrow with a circular tail, wused to depict o
transfer of data and control between modules"
(5:1087-1088).

a\b

Figure 2, Structure Chart Diagram

In structure chart notation, the arrow whose circular -

tail is filled in () represents the transfer of control

information, TIf the circular tail of an arrow is open (not

filled in), it represents the transfer of data between : l

. L

.

8 R

3

o

R N LI P ISPy gL, N A P P S AR AT IR BT AT A DA

fut

AN S 7 S e A Dt AR fasie Brtus IRin G40 L Su SNie S Sete S/ S e S e Biie-iee S e Seen 2nesmeen T ———r Y —~

modules.

A data flow diagram is a graphical representation which
depicts the information flows and the transforms that are
applied to data in a software system, Data diagrams are
also called bubble charts or data flow graphs (1:101), A
data flow diagram consists of a series of circles
interconnected with vectors (see see figure 3). The circles
or bubbles represent functions or transforms which act upon
incoming data, represented by incoming vectors, and produces

output represented by output vectors.

Figure 3, -Data Flow Diagrams

A fundamental . system model can be represented as a
single bubble with input and output data. This initial
diagram can be refined in a series of bubbles. "Each
transform in the diagram (bubbles) could be refined still
further to provide greater detail.... That is, the diagram
may be layered to show any desired level of detail" (1:101).

When using data flow diagrams as a tool in the

requirements specification and design phases of software

CR
- veveviy
4

N
-

e

-l
-
®

-'... -
AP N S

C m e e m e cmmamamu—y e — T~ - - - T Y Ty w i

NIRRT o

LR Sl SO

L e I T

Faliih- i ants aan con o

development, two important factors should be kept in mind.
"Since movement and transformation of data are the only
characteristics represented by data flow diagrams, the
concept of the passage of time along any single or several
data flow path(s) is not present" (5:1090-1091), The other
factor of importance is that the decomposition process
produces a network of programs rather than a hierarchy of
programs (6:23).

Both structure charts and data flow diagrams are
utilized in a software design technique known as data flow
design method. "The data flow desigﬁ'method was first
proposed by Larry Constantine (Reference 2) and has since
been propogated and extended by Ed Yourdon and Glen Myers
(References 2,3). It has been called by several different
names including Transform Centered Design and Composite
Design" (7:305).

The data flow design method is based upon the
functional decomposition of a software with respect to data
flows. The data flow diagram is used to help the designer
show the flows and transformations of data through the
system. The data flow diagrams are then partitioned into
three different types of transforms : efferent, afferent,
and central.

The afferent transforms represcnt the input and are
concerned with accepting and developing the system's input.

The efferent transforms are concerned with delivery of the

10

A .-"'.“.'.‘ '.‘..-‘ T '.'\-".' '.'. ".' . .'.'A'.“'.“ - .'-‘.:'.‘-‘.‘A '.':"-'.“ . e RSN
B A e R N, AP P FAY T S PO, S S, A, . .S W, Sl SO SR MO VU RS PRL S PR SO M Wi S T P U S VS PR VN

st e
b,

systems output data. "The central transform is the portion
of the system DFD that contains the essential functions of
the system and is independent of the particular
implementation of the dinput and output" (9:226). The
identification of these three portions of the data flow
diagram leads to a hierarchial decomposition of modules
which can be more effectively depicted using structure
charts. The designer will iterate between the data flow
diagram and structure chart representation of the project in
order to decompose the system into smaller more manageable

pieces.

Data Dictionaries

SADTs, data flow diagrams,u and structure - charts
graphically illustrate the functional structure and fiow of
information or data in a software system, The information
portrayed on these graphical representation tools can be
used to determine the general content and some of the
detailed information contained in a data dictionary. In
turn, the data dictionary provides the definition and
composition of items illustrated in the graphical
representation techniques. "Basically, the use of a data
dictionary is an attempt to capture, and store in a central
location all definitions of data within an enterprise and

some of their attributes, for the purpose of controlling how

11

T T vy

PR

ik

.o f . .
. e .

.] .’»' . . :
POP IOV W i

.}

data is used and created and to improve the documentation of
the total collection of data on which an enterprise depends"
(11:1.1).

A data dictionary consists of dictionary entities and
their attributes, An entity can be generally placed into
one of the following three categories:

a. A data entity, such as a data item, group,

file, etc., and among its attributes may be
user names, System name, picture, description,
etc.

b. A processing entity, such as a module, program,
system, etc., and attributes may include name,
description, programming language, etc.

c. A uscage entity, such as a person, department,
terminal, etc., and attributes may include name,
security attributes. (11:1.3)

The wuse of data dictionaries can help reduce the
rapidly growing costs associated with the documentation and
maintenance of software systems. Software experts estimate
that approximately 657 of the cost associated with software
systems occur during the maintenance phase of the life cycle
(2:201).

A data dictionary is an important tool during the
maintenance phase of the software life «cycle. llowever, a
data dictionary can contribute significantly to all phases

of the software life cycle.

Using a DDS (Data Dictionary System) provides

economic and technical benefits. A DSS may provide
immediate savings, or it may facilitate a continuing
technical process by making it easier or more reliable
to perform. To summarize the benefits:

Better control of the organization's data resources

.

12

St T . RIS AP s . . R T Y T N T e e L A et et e PR T T R e
T S B YR TN 1D St i Y T PR Wy YRSV SRR T Wi TP T TP W NPT N W W IR el P { Ll Wl WA S WO WA Sl W g U 1 Sl o s .a

2" o " a'a ‘a'a’s _a

P I I P [APy

P R
SR e o

il

through improved (i.e., centralized, rigorous, and
standardized) data definitions, data handling and data
collection.,

Improved +transportability of data and software between
computing environments through standardized data
elements and data definitions.

Improved documentation for databases, programs, and
systems,

Automatic compilation of data definitions to be included
in application programs or in DBMS database definition.

Increased security and access control for the database
environent,

Effective aid to software development, modification, and
maintenance through configuration management of system

components of data and programs.

Increased cost effective use of- data resources
throughout the system development life cycle. (12:9)

The degree to which a data dictionary system can
provide the benefits listed above is largely dependent upon
the type of data dictionary syste% used and its level of
integration into the databases and system software of the
organization.

There are basically two methods of <classifying data
dictionaries, One classification 1is based upon the
capability of the data dictionary system to provide data
entity descriptions to other softwvare. The second
classification method 1is concerned with the dependence of
the data dictionary system on other soltware for performing
its functions,

When examining the capabiltiy to provide data entity
descriptions to other software, a data dictionary <can be

13

e T S L e e e T T e e T e e e e T e e T e e e e
L T T ~
CIRICIRI IR I IS P -t IR I T TS SR S R S S Pl e B et et e
S atat et atar e LR B L A U I e R L

e bl il

.‘.'I“ ‘.l . 1‘

Lol

e

(N

[\

L)}

PSR NI SO S I SCY

R T e i e i e P A e e v e St e DA st A Jente et S SuAhut ol Bude B i h A e ey

classified as either passive or active. "A passive DDS is
an information tool that is only accessed by personnel, to
enter or retrieve entity.descriptions. With a passive DDS,
descriptions of the same data will exist concurrently in
other software such as COBOL programs. Changes in DSS
content do not automatically produce corresponding changes
in the other data descriptions, and vice versa" (12:6). A
passive DDS will serve as an aid to manual procedures for
controlling data, but will not directly control an
organization's data descriptions.

"An active DDS, through softvare interfaces and
computer operating procedures, provides Lhe ONLY source for
data descriptions to other processing components such as
compilers, assemblers, and DBMSs, The active DSS assists in
the enforcement of data standards énd usage throughout the
organization and its computer applications" (12:6).

The dependence of a data dictionary system on other
software can be <classified as either stand-alone or
dependent. "A stand alone DDS is self-contained; that is ,
its functions are performed without relying on any other
general prupose software such as a DBMS" (12:7), YA
dependent DDS is specifically tailored to operate in

conjunction with another general purpose software system,

usually a DBPS, It requires the DDBMS facilities to perform

DSS functions. In some cases, the dependent DSS 1is

inplemented as an application under a DBMS, wholly using
14

PR S R T S SO T N A T P T Y T W

DBMS facilities"™ (12:7).

The software engineéring tools discussed: SADT, data
flow diagrams, structure charts, and data dictionaries
provide valuable support to the software engineer during the
various phases of the software life cycle. The automation
of these tools <can help relieve the burden of the many
tedious tasks associated with applying these tools to
software projects. Although automation improves the ease of
[use and effectiveness of software engineering tools, the
application of the tools in a software development

environment can provide increased flexibility and efficiency

! in the performance of software development and maintenance
tasks.

"A software development environment is a collection and
integration of automated software development tools that
should adequately support the entire software life cycle"
(13:9). An example of a software development environment is
the Software Development Workbench (SDVW) developed at the

Air Force Institute of Technology (13:ix). The SDW

constitutes a continuing research effort to provide support
: in the development ¢of software products by providing
integrated and automated software ecngincering tools to
. enhance software development in all phases of the 1life

- cycle.

15

- S et - W tet et e - . PRI I B S -t

P S TR P B DR S Y L P N A TR T e U ST
e “u atlatalafatcltetelatelelefelel ool etsalsSnlateateoleata’arat e artataataratatasal ool e -

A

U

Ty — —— T - ———— W

Problem Statement

The purpose of this 'study is to design and implement an
automated tool to generate data dictionaries from graphical
software engineering tools such as data flow diagrams,
structure charts, and SADTS. This tool will interpret
the graphical software representation and interact with the
user 1in order to obtain the necessary information for the
data dictionary. The tool will attempt to identify any
specification errors and bring them to the attention of the
user.

The manual generation of data dictionaries is a tedious
and time <consuming task. There exists a need for an
automated and interactive software engineering tool which
generates data dictionaries with a minimum amount of user

interaction.,

Scope of the Thesis Investigation

This project will only be concerned with generating
data dictionary information for the following software
engineering graphical tools: SADTs, data flow diagrams, and

structure charts.

Approach

The initial step in the project will be to perform an

extensive literature search on the problem. This review of

16

PPN AP VS W, VA T, U SR VG YO A A WU SO VLA W AP TO R W VO APV A N PR

P Y

ottt

-t o

) S

b

P~

P

* A" a®sladtaw 'S

current information will have four primary goals:

1. Gain a thorough understanding of how SADTs, data
flow diagrams, and structure charts graphically represent
data elements and data flows.

2. Evaluate current data dictionary systems in order
to determine an appropriate format for the data dictionaries
generated by the proposed tool.

3. Understand the process for generating data
dictionaries from SADTs, structure charts, and data flow
diagrams.,

4, Study existing automated data dictionary systems.

Utilizing the information obtained during the
literature search, the process of generating data
dictionaries will be modeledn using a graphical
representation technique. Emphasis will be placed on
identifying those tasks in the process which «can be

performed more efficiently with the machine and those tasks
which will require user interaction.

The next phase of the project will be to wutilize a

model to formulate a requirements definition for the
automated tool. During this phase, the primary goals and
objectives of the tool will ©be specified. The primary

concern during this phase will be to <clearly delineate
exactly what the automated data dictionary generation tool

is to accomplish for the user.

17

R AT T S T PRET U S T
*. S

- -

o BT e e e e e e, PERPE - .t et =l
A AT R T R R AP N A e LIS T AT T AN
IS N T MR AP S DY IV I IV I S T T Sol Sl S S TSN

-y

WP A PRI DR RPN P

e

—————

Using the requirements definition, the next step is to
perform the preliminarx design of the tool. During this
phase, the component structure and framework of the tool
will be determined. The sub functions or modules needed to
meet the requirements of the tool will be identified.

The next stage 1involves the detailed design of the
tool. During this phase, specific algorithms or procedures
will be developed to perform the functions identified in the
preliminary design phase. A test plan for the software
associated with the tool will be designed.

The algorithms developed during the detailed design
phase will be translated into an appropriate programming
language during the implementation phase. Upon completion of
this task, the tool will be loaded onto the target computer
for testing and integration. The iﬁplementation of the tool
will Dbe followed by extensive testing to ensure that the

tool meets all requirements specificiation,

L, e e S T T T

.. -"~"._-‘- . "v'.'-'~"-'~ Y Tt et et
" "8 " mtata e e atatataratat il et e

- - - - - TN Tw T YT At de caeolng Seh S ek s e B

171, Requirements Definition

Introduction

F. The Requirement's Definition is a clear statement of

the goals and objectives of the proposed software system.

i This phase of software developement requires a great deal of
*; interaction between the software devoloper and the software
user., The software wuser will attempt to describe the

functions or capabilities he or she expects the proposed
@ software to provide. The software developer will take the
user's concept and attempt to translate it into specific
[functional and performance objectives.

ti ‘o During the Requirements Definition phase, emphasis is

placed on defining as precisely as possible the exact

LA 2 um gmn . gan o
o .

function or functions the proposed software is to perform in
support of the wuser. In order for this software
development step to be successful, the user and developer

must be able to effectively communicate with one another.

In developing software, the possibility for misunderstanding
and misinterpretation is extremely high., "The dilemma that

confronts a software cnginecr may best be wunderstood by
repeating the statement of an anonymous (infamous?)
requester: "I know you believe you understood what you
think I said, but I am not sure you realize that what you

heard is not what I meant..."(1:94)

19

e e v YW
PR

T

LI Y

P
L
>
7
N
3
#
3
.,
[
[
p.
b

Rt R L T S LI
[PR S AP S A S PO AR

-

[,

@ e
L

T -77""‘.*('-*?-

vl—v -

P [

-
s
s

A Bt Tl Rl Al e S I — T v T T T T

The primary component of the requirenents definition
document 1is a functional and/or data model of the proposed
system. This model pe;forms a dual role. It provides the
developer with an ecxcellent tool for defining the
functional/data specifications for the system and enhances
the communications process between the wuser and the
developer.

In addition to the model, the requirements definition
may also include a description of the fundamental concerns,
constraints, and objectives that will guide the developement
of the system. The Requirements Definition Document should
contain a set of evaluation parameters and criteria. This
will assist in eventually testing the system to ensure that
it meets all specified requirecments,.

The purpose of this chapterAis to develop the system
requirements for an automated/interactive software
engineering tool which translates the information <contained
in graphical software wengineering techniques into data
dictionaries. Initially a group of objectives and concerns
fundamental to development of the tool will be listed and
explained. iith this background, the requirements for the
tool will be defined. A two dimensional graphics technique,
data flow diagrams, will be used for defininp and describing
system requircments. Iinally a set of evaluation parameters
and «criteria is established to aid in testing the sofltware

to ensure the system meets specified requirements.

20

aalata®a e

! . Qbjectives and Concerns

Before the functional model of the data dictionary

generation tool was developed, an extensive literature

vow oY v .,

'. . search was conducted to identify objectives and concerns -
. related to the design, developement, and use of data
; dictionaries as software engineering tools.
‘- Data dictionaries are becoming recognized as an
F important tool in the management of an enterprise's data
E resources, "Corporate management is becoming aware of an
} important asset which, wuntil recently, has been virtually -
ignored. The asset is data.... The idea of data being a
L corporate asset is relatively new, and has developed along
.‘ with the influence of computers in business. The capacity ;wa
of computer storage devices for hoiding data has increased
and the relative <cost of these devices has decreased" .
i‘ (14:118). i
- The recognition of the importance of data as an
E organizational resource has led to the development of data
L dictionary systems with a wide range of <capabilities and
‘ features. The objectives of a data dictionary system depend
- upon the types of activities it supports., 'The objectives of
h the automated/interactive data dictionary generating tool
' will not only consist of those for the resulting data
dictionmary, but also the objectives of the portion of the

tool which extracts data dicitonary information from the

i 21

- . N A, e e e T T I R e
et T N T e N e T e T T e e e T T At e T e et e et e T

4
b
.. .
I B c et et e o ™ - . e 7. - - . . - - - ~ - - » .« . . - - - . - - - - - - » .
ERE AL SRR VAE MW W SO DN - SACLAT RS YA /R NE MR YRR WAEWIEIVRCANEAE AT P SRPLINE S PP L PRE APy IO IR AR R S S

AT AP A Sk S St Badt I g A SAG SuEh e o osk Sl aves it e S W ——— T -

software representation method. The objectives and concerns
regarding the data dictionary generation tool are described

and listed in the following paragraphs.

Support All Phases of the Software Life Cycle. A

primary objective of this tool will be to provide improved
support for all phases of the software life cycle, The data
dictionary generated by this tool can be used as the sole
source for metadata (information about data) through all
phases of the software life cycle, To better define
objectives, eceach 1life cycle phase and the support it can
receive from a data dictionary system will be described
individually,
Support Requirement's Definition Phase.

"The wuse of the DD/DS (Data Dictionary/D@rectory
System) in requirement's definition and analysis is
critical, The DD/DS provides a framework in which the end
user and analyst can communicate with each other using
common terminology and definitions" (15:34), As discussed
earlier, miscommunication between the user and designer can
cause serious problems in any software project. By
maintaining consistency in the data uscd, a data dictionary
system can aid in averting potentially disastrous conditions
caused by inexact or inconsistent data.

The data dictionmary is also used in the requirement's
definition phase to document requirements as they are

defined and to support their analysis., The data dictionary

22

e

PP)

P T S W Y)

records descriptions of processes, information about the
operation of processes, potential uses of the processes, and
the data elements required by the processes. It also
contains information about the relationship between
different processes and data elements,

Once data requirements are defined, it is necessary to
determine how much of the data is currently available in the
data resource inventory. This will help -ensure that
unnecessary redundancy is not introduced. "Another step in
the analysis 1is to determine if the requirements can be
satisfied by modifying existing data. - The assistance of
DD/DS is invaluable at this stage, especially if the DD/DS
already has a complete inventory of the enterprise's data.
This is further supported when the data defined in the DD/DS
has common definitions which can facilitate the analysis

process" (15:44),

Support Preliminary and Detailed Design Phases.

Design specifications require information about data or
metadata. "Recording these metadata in the DD/DS is very

useful because the DD/DS can provide a means for maintaining

control over the system design specifications and can aid in

% insuring that requirements stated carlier are consistent
. with the implementation, This can be accomplished at the

common denominator between the "what" and the "how", which

® is the data element" (15:46).

23

Tet e e e T e e . e Tl LT T e T e e e e e et . N
L T S P P S L T IR T S O L P ST S S . .
o, .

P N P TC LR ORI T N L A A ST SN
R i SRR N N A S e IS WP SR S WY W SR P I R N

v ' ' .
P ..;‘-'_L._J

ARl Ak

o

LK

The data dictionary is a valuable tool in performing
both system and database design. The data dictionary can be
used for storing the desériptions of system components such
as program modules, subsystems, data [flows, and data
structures. The descriptions will contain such information
as functional characteristics, interaction between different
components, and the data components require for operation.

"Database design involves describing the data required
by the programs, beginning with previously developed
definitions of the data elements, records, and descriptions
of storage structures and access strategies., These arec uscd
to generate a desired data structure dr schema for the
database. Also from these descriptions, the programs view
of the data, or subschema can be generated" (15:47). The
data dictionary's ability to store these descriptions make

it a valuable aid in the database design process.

Support Implementation Phase.

"Metadata about the program and about the data can be
retrieved from the DD/DS to help in the programming task.
Pertinent metadata retrieved from the DD/DS can be
incorporated directly into the programs being coded as the

the data definition block"™ (15:47).

Support the Integration [hasc.
During the integration phase of the software life

cycle, the testing and validation of the software project is

.

24

D A Jefa ik uau —

f VS SN L S Y * P R _J

A I
R
Abrd b '

Lo RSp—

Lo

]
i

3

aoa s &

la'a ‘a 4 4 e

to

an 1important step. The data dictionary can aid in this
effort. "Use of metadata can be extended to testing and
validation, Once the characteristics of the database are

recorded, it would be easier and possibly more reliable to
generate test data using metadata recorded in the DD/DS"

(15:48).

Support Operations and Maintenance Phase.

The biggest contribution of a data dictionary system
to the operation and maintenance phase of the software 1life
cycle is as a tool for documentation and standards.
Software documentation is a serious and.costly problem for
all organizations. "The DD/DS is one tool which can be uscd
to overcome these difficulties by automatically producing
documentation about the database and the system, In this
licht, the DD/DS should be used routinely to augment current
documentation efforts, and to supplant a large percentage
(60% to 70%) of existing systems and data documentation
requirements, When used in the normal course of
development, the DD/DS can lessen the monotony and
rcpetitiveness of the task of documenting, and it can assist
in completing the system development cffort on time,
delivering an end product which is well documented" (15:50).
Although documentation is a task which should be done during
every phase of the life cycle, a lack of good documentation
is disastrous when attempting to operate and maintain

software. The data dictionary is also an invaluable aid in

25

Pl U I SN W L

P

[_ ¢/

[

- ,..,.'. .

Ta Slmte Tal?

vy B A i b s Jonn. St aemy s sman cmes mesmem shermens e sven de e M e e ae ea e A MR 9 Se Ran 4 *’ﬁ'ﬁ““‘ﬁ?

determining the effect of a software modification on both
the system and database. Its utilization can help reduce
both the time and money involved in software maintenance.

A data dictionary can aid in the enforcement and use of
standards in an organization's data processing endeavors.
The use of standards can help to promote the sharing of data
resources 1in a controlled environment. "In the conputing
field, especially, the same terminology is often used to
mean different things in different contexts. Thus in some
cases, standards arc necessary so that everyone uses the
same data to mean the same thing" (15:52);

Data related standards can be grouped into one of two
types, data definition and data format conformance (ref 15).
"Data definition refers to a standard way of describing
data" (15:51),. As an example, a naming standard could
consist of rules or conventionss for assigning names to data
entities. This would allow all users in an cnterprise to
know that when a data clement is used in programs, reports,
and files that it means the same throughout the
organization.

"Data format conformance is content related. It mcans
that a data element,in addition to having the same nanc
throughout the cnterprise, also must conform to a comnon

set of format rules for the data clement to retain the same

meaning. lioreover, these must be accepted throughout the
enterprise” (15:51-52). I'or example, the data element date
26

PR

I e T R L Tt m Tt et te et e tar e ot LR P I TN .
T S ST T SR, P T P R O A R DI PR g VA W T Y R a

beg o

oy

L g g

Y
()

T v A v— —T T Laha. soen atus amd AL SubS St ary T T TY

should have the same format throughout the enterprise and
| only that format should be allowed. Another example would
be the wuse of codes in an organization. If a two letter
code is an accepted representation of a state (ic SC, VA,OIl)
' then that code must be accepted by the entire organization
and no other codes should be accepted.

"The DD/DS can failitate the introduction and

1 enforcement of such standards, via a set of editing rules to
be included in the DD/DS. These editing rules can, in
effect, edit and validate acceptable codes, so that

g nonconforming codes are not acceptable. The DD/DS can be

used as both the promulgator and the enforcer for data

standards" (15:52).

i (e |
Data Dictionary VWill Support Information About
ntities, Relationships, and Attributes.

N The data dictionary can be <considered a database
whose contents is information about data. The domain of a
data dictionary database consists of entities and their

> attributes and relationships. The following definitions
should clarify this concept.

"Entity - any named concept, object, person, event,

» process or quantity that is the subject of stored or

collected data.
Relationship - a pre-determined ordering between pairs

b of entities.

27

N T L A T e e T et T e e - At
AT I P P '
[PPSR S AP I I L W, D A AT A .

b POy - -

P

T e T e T e T T s A e et e e e e T e i L v T N e e e et e e e
PP W S LI SR Uil G 1P AP Vil VAT WY YRIE Vol Vol Wi VO Wl Vs W ML S5 VI, U UL Y. ™ W L R W R Wy Y G Wy W WY

TR LT 'WW"'
[B

tiax Length Relationship Entity
400 Characters Created Created
(Attribute) (Attribute) (Attribute)
] Payroll Record | N Contains Social Sccurity
L (Entity) | (Relationship)| (Fntity)
. —
—
- T
. Entity Created Comments h Lengeth
- 820519 (Attribute) Y Characters
. (Attribute) | (Attribute)
o il —_ ,
L Figure 4. ULntity, Attribute, Relationship Structurc
. 28
o
Lt s e e e a M e e e

Attribute - a property or characteristic of an

entity"(16:8).

A data dictionary entity represents an object, person,
process, etc. It is not the actual data that might exist in
a file or database, but a representation of that data. Tor
example, the enitity called "social sccurity number" would
not consist of an actual number such as "247-82-4457".

An attribute is a characteristic of an entity. An
attribute for a data dictionary entity could, for example,
be length, In the case of the social security number

entity, the length attribute would be nine.

The relationship between entities indicates the
structure or ordering that exists between different
entities. I'or example, the entity "Payroll Record" may
contain the entity social security .number. leclationships,

like entities, may also possess attributes which describe
their characteristics. Figure 4 graphically illustrates the

entity~-attribute-relationship structure.

L SO S LA WY S I

.

s a2 a

4 o aa o - -

b e

ala

Aa ama oAb

ea Aaaoeo

e —— —p ” — WT— -

"The basic unit in a data dictionary is the entity.
lelationships connect pairs of these entities, and both

entities and relationships have attributes assinned to them"

(16:10).
Entities, relationships, and attributes can be
organized 1into sets known as types. Attribute-types are

organized so that cach menber of a set represents a like
characteristic. A typical attribute type could be 'date
created”. In a similiar fashion, entities can be organized
into entity-types. All examples of a specific entity-type
would have similar or identical characteristics or
attribute-types. Like entities .and attributes,
relationships can be groupcd together to form relationship-
.‘ types. Relationships which are examples of a particular "
relationship-type possess attributés from the collection of

attribute-types associated with that relationship-type.

Examples of relationships are system-contains-program and

record-contains—-element.

%

"These "types" form the basis of the dictionary schemna

-—-the collection of structures that describe the

dictionary.... This entity-relationship-attribute
construction uscd for the dictionary can be used to model
the schema as well, Thus the DPS contains a "weta schema,"
or schema describing the schema (The concept of "meta" is
defined as data about data.). At this "meta" 1level, the

three concepls "entity-type", "relationship-type'", and
I) ¥ f Vi

e T T e

DAL 2L AP 20 S S S N T NP VSV N3P U S0 M S P S RS S S SR NV SRS SR SR S

(o

"attribute-type" are all "meta-cntity-types".
these concepts are "meta-entities which
connected by "meta-relationships". '"iHeta-attributes"

associated with both the "meta-entities" and the

relationships™ " (16:12), Figure

entries at each level.

LR B e ko o

Instances

of

are conceptually

gives examples

can

be

"meta-

of

SCHEMA MODEL LEVEL SCHEItA LEVEL

DICTIONARY LEVELS

Typical Meta_kntity Typical kEntity-
Types Types,
Relationship-
Types, and
Attribute Types

Typical Lntities

Relationships,
and Attributes

Element

Social Security
umber
Agency liame

Entity Type Record

Employce Record
Payroll Record

PDocument

['orm 1040

Relationship_Type Record-Contains

Payroll-Record

Element Contain-
Employece-liame
Attribute~Type Length @ Characters
Creator ADP Division

Figure 5.
Contructs.

The Data Dictionary Vill Support

Lxamples 0Of [Entity, Relationship,

Pata, Process, and

User Lntity Types.

Data entities are a class of entities that

attribute

describe or

s

r.—.-,v Rt SRR e A S0 AN Ans A an Sres B 2ues e Jaanine

b
b
- k
@ '
represent objects that are units or data or aggrepates of

r‘ data. The following list contains some specific classes of -
data-entity-types.

1. Element - describes instances of data belonging to
_ an organization (Lxamples: social security number and
[agency name).

- 2. Document - describes instances of human readable

data collections (Lxample: Form 1040).

3. Record - describes instances of logically
associated data (Examples: Employee Record and Payroll
Record).
4, IFile - describes instances of an organization's
data collections (Examples: roster and accounts
o receivable). (16:14) T

Process entities are a class of entities that represent
processes and components that exist as part of the data
processing environment. The following list contains some

specific classes of process-entity~types.

1. System - A collection of programs (and indirectly
modules) that can be associated with major functions of the
organization (Lxamples: Personncl System and Supply System).

2. lfodule - A collection ol processable code which is
called by one or morc programs and which may, in turn, call
one or more other modules (lkxample: Sort Reccords),

3. Program - Describes instances of automated

31

. et PR N “ et . .
gty T e e e e et «, v .

processes (Example: roster update). (11:2.8-2.9)
&‘ User-entity-types describe members belonging to .

an organization who are responsible for data in the data

(2haChat

g

dictionary. A uscage entity can be a person, organization,

terminal, or office.

The Data Dictionary Will Suport the [ollowing Classes

of Relationship-Types: Contains, Processes, Responsible-

.-WTV

For, Ig, and Derived From.

b —_—

The <contains class of relationship-types describes
s instances of an entity being composed of other entities. "A
typical CONTAINS relationship-type ié RECORD-CONTAINS-
ELEMENT, which has as a possible instance the relationship
ﬁ ‘e "Payroll-record-contains-employce-name"." (16:15)

The process class of relationship-types represents an

association betwecen data and process enlLity-types. "A

typical PROCESSES relationship-type is SYSTEN-PROCLSSES-
FILE, which has as a possible instance the relationship

"budget-system-processes-cost-center-file"." (16:15)

Associations between entities representing

organizational components and other entities denoting
?’ organizational responsibilities are described by the
a responsible-for class of rclationship centitics. "A typical
\
2 RESPONSIBLE-FOR relationship-type is USLER--RESONSIBLE-FOR~-
§
E_ DOCUMENT, which has as a possible instance the relationship
- "personnel-office~responsible-for-SF-171"."(16:10)
1." To describe associations between wuser and process
! 32

IR e e e TR e T s T e e e e L e e T e e e e e TN e e N T,
DU VA VLA i Tl S AP NP SLAY W W, LI EPEAPEAE AP S W P PP L Fata ot et ata atafa’ata., lataSalatalasal

P REAE VAT VO VAR W oL WAL

PP T e

Ty

entity-types, the runs class of relationship-types is used.

It illustrates that a person or organization is responsible
for running a «certain process., "A typical RULS
relationship-type is USER=-RUNS PROGRAIL, which has as a
possible instance the relationship "John-Doe-runs-system-
backup"." (16:10)

The to class of relationship-types describes flow

associations between process entity types. "A typical 1O

relationship-type is HODULL-TO-LODULL, which has as a

possible instance the relationship "wain-program-to-sort-

routine," (indicating flow of control or data within a
program)" (luv:l6).

The derived-frowm class of relatiouship-types describes

2 ~\ R

associations between entities where.the target entity is the
result of a calculation involving a source entity, "A

typical DERIVED-FROM relationship-type is DOCWILHT-DERIVED-

;ﬁ FROM-FILE, which has as a possible instance "annual-report-
!

t derived-from-plans-file"."(16:106)

® The Data Dictionary Should Support an Attribute-Type
; Which Indicates Software Life Cycle Phasc of the Entity or
: Relationship Being Addressed.

} The data dictionary generation tool will be used to
5 support all phascs of software development from requirements
! definition to operotions and maintenance. To effectively
é perform its functions, the data dictionary nust possess a
[

r

.- 33

o

T T Tt e T T N e T T T L T e e O R TV T N TR

. -~ - « T a® e e - - " . - - . -
Tl et At atatel st el At gt T T e e e et g

- . . P R T T T e S i e R I A e S e e i Bt OIS Sl ¥

e T

means of determining the stage of development of the data
and process descriptions it supports., This facility will
help the designer keep better track as to the status of the

project and will allow a means of tracing the evolution of a

Ty T YT T T T oo T
. .

b project component through the various development phases.

\ User Friendliness.

{ The data dictionary generation tool will be required

I‘ to interact with the user in order to obtain complete
f descriptions for the data dictionary concerning the
processes and data illustrated on the software

representations, The user will also interact with the data
dictionary when obtaining information about its contents.
Failure to establish a freindly wuser interface which
(o . : , R
enhances communication could lead to the data dictionary

containing erroncous or mislecading information about the

system's data and process cntities,

The Data Dictionary Should Support User Defined

Attributes.

The data dictionary will support a set of standard
attributes in describing data and processes, llowever, by
allowing the user to creatc his own attribute, the

flexibility of the system will be greatly improved.

‘ Error Checking.

When the tool extracts data dicitonary information from

a software representation, it should check for errors in the

34

T T O Y e e et e te L Tt et ety
e, . o RN L R A R AT I uA UL SRR St O
PRI . . N DRETAIR TR I
- FERT AT N

4'-'-‘-'-‘-.‘.'A"..A'.-.-'-,'-.-.'-.-.- .‘._'\ _'-_'-_"_‘-"-. -_' ‘.‘..‘.-' ".-'_~.."4 . o, ',_'.7._' o
A VRN SV NG IV ML PN PRI WK P P SR WA R U LIPS PR PR S SV R I S, S TR SR SO AP S JVNE A RN A -

e

W W w W Y- W oW —w oW TR T T W W TR ——— e —w W —w

representation and bring them to the attention of the user.
Errors in format or meaning in the software representation
could lead to the processing of erroncous or unclear

descriptions in the data dictionary.

The Data Dictionary Generation Tool Should be capable

of Interpreting the Contents of Several Different Software

Representations,

There are currently nurierous techniques and
methodologices available for supporting softwarc developnent.
For the tool to be useful it must be capable of working with
more than one of these techniques. Also'it is not unusual
for a single software project to employ more than one of

these techniques in the coursc of software developnent.,

Provide Support for The Information System Planning.

Most information systems must undergo continual change
and modification in order to support the changing needs of
the user, These changes and modifications are more
efficiently controlled and implemented if a system's
planning activity takes place. "The purpose of this planning
activity is to determine the feasibility and the technical
and cconomnic trade-offs for a planned system, basced on an
assessment of the current environent and an analysis of
current use and future requirecments" (15:27),

The data dictionary system is an invaluable toel in

supporting this planning activity, Information systen

35

)

R T e e R e

planning requires an initial assessment of the current
environment. This assessment helps the planner to determine
the data that 1is available and to analize information
requirements. "These activities... are uscd in determining
the data needed to produce an information product, the data
that 1is already available, the potential conflicts and
redundancies, the impact on existing systems, and the
potential users of the system" (15:23). The data dictionary
supports this activity by recording and coordinating
information needs from various menmbers of tlie organization.

In performing the system's planning activity, it 1is
important for the planner to analyze <current wusage and
determine future requirements. To accomplish this task the
system planner must understand how information is actually
used to perform specific functions, how data cntities are
rclated to both each other and otlier system components, and
the dependencies of the data on other entities and
processes.

Many of the tasks associated with system planning
activities are time consuming, tedious, and prone to error
when performed mwmanuually, "With the aid of an automated
tool, such as the BD/DS, the tasks may Dbe simplificed,
reliability may be incrcased, and consistency may Dbe
maintained, while facilitating coordination of these

planning activities" (15:28).

The data dictionary systenm is an effective tool for

36

« e e e e L U eV L R SN “ - EA - IR -
. s e e e e e e T e e e e e T N e T e e e
. e e T T e T Tt e T s R P T N S
LI OE NG Pl S T Vol Vo Wil Wil Wl AT Yl W Sl Yhdl VLT TR SRl o WL P Y. W I PR R e

St et e T et ety
MR W LN

P IR

I S I B B P

Y ST

e

"

{

[+

information system planning. "It provides coordinated and

consistent functional sdpport for documenting the plan and

its subsequent use as a control mechanism over developnent

and operation since the DD/DS contains data about the

enterprise's operational data, that is, it is an inventory

of currently available data. Further, the DD/DS contains

information about how the data is used, its relationship to

other data entities, occurrences, dependencies, and
constraints. Thus with a DD/DS fully operational, its use
during the planning phase <can increase control over

developmental and operational aspects of the organization"

(15:29),
.6 Data Dictionary System Should Contain a Security
Feature for The Protection of The Informations It Poésesses.

The security of information is a —concern when

designing the data dictionary generation tool. Two reasons

for this concern are:

"1, The dictionary database represents a complete
inventory of the enterprise's processing system, An
intelligent decision on anyone's part intent on

accessing the enterprise database in an authorized

manner would be to first perusc the contents of the

dictionary databasec.

2. The basic concept of a data dicitonary systenm

includes the ideca of a central repository of.data, the

37

IR

A I S S L AL L WAL AL LI L I S B B DAL DAL NI S P P AR S ISP PR SIS 2 SN .

o

AM A A ot i

el
A e

DN P Y

A

24

»)

=2 =

dictionary database, which is considered to have a high
degree of reliability and the confidence of the database
users. As such, precautions should be taken to assure
that unauthorized alterations, cither accidental or

intentional, will be prevented" (11:2-20),

A security facility for & data dictionary system should
not simply restrict access to data dictionary information,
but should differentiate Dbetween creating, reading,
altering, and destroying existing data dictionary cntities.
"In the final count it must be considered that the security
of the data dictionary systen is related to the sccurity of
the entire computer system. The level of sccurity existing
there is influenced by the security of the installation, as
well as the procedures wused by the personnel “of the

enterprise" (11:2-21).

The Data Dictionary System Should Provide Both

Reporting and Intcrrocation lKacilities For Use By the U

0
o]
e

and Dictionary Administrator.

The benefits derived from the use of a data
dictionary system are direcctly related to the quantity and
the quality of the data the dictionary databasce contains
about the information system. The usclfulness of the system
is also related to the reports generated and the flexibility
with which the database can be interrogated in responsc to

specific questions.

36

hlind

P AY

e . o .
el N PR
PP VT IR INY PP U S S R

oot

e

"The major categories of reports on the contents of the

dictionary datahbase arc: -

l. Listings of all dictionary entities of a given
type, 1i.e., 1items, groups, ctc. Such listings will in
general contain some attributes for cach entity.

2. Listings of all attributes for a specified
entity of any type. Such listings may be limited
essentially to the attributes placed in the dictionary
database, or they may also contain data about all or
selected dictionary wentities which have a logical
relationship to the specified item,

3., Usage reports show either the manner in which a
given entity is used by other entities, or to which
other entities wuse a given entity. The manner in which
such reports are provided may vary in that only one
level of usage may be included, i.e., from file to group
or vice versa, or that all levels of the hierarchy may
be included in the report. In the former <case this
facility nmust be invoked multiple times to obtain the

same results.

4, A key-word-in-context or Lkey-word-out-of-
context facility that can be usecd to scarch specifies
attributes for given Lkey word. A facility of this
nature can be useful in view of the fact that the

previously described reports allow only the use of a

39

PO)

) SR R

EREI
v

—tdb oL b 2

PR

s

ol

-

S, T . . BERNERN . . e : . . et
P P A . LI S S PR N P PO R L R e P
AL P AP SR P P\ g JE S LS. S S Sy L VS S T S AT W S SR S SO SRR 1y JURC S O S S A SR SRS

limited number of attributes as scarch arguments. A
simple example of the use of the use of such a facility
might be to query the dictionary database for a listing

of all programs written in COBOL.

5. Some systems provide specialized programmer
interfaces at which the dictionary database 1is made
available in a prescribed format. Under such
circumstances, it is then possible for an installation
to provide extensions to the reporting facilities

available" (11:2-14).

Functional iiodel For The Data Dictjonary Generation Tool

With a 1list of concerns and objectives developed,
sufficient background has been ostéblished to develop the
defintion of the functional requirements for the Data
Dictionary Generation Tool. This task 1s accomplished by
formulating a functional model which defines and describes
the tool's functional requirenents.

A variecty of techniques and methods are available for
defining system requirements. From among these, the Data
I'low Diagram technique was selected to definc the
requirements's for the Data Dictionary Generation Tool.

Data Flow Diagrams arc¢ especially uscful in detining
the requirements for software systems wvhich contain a

complex and varied array of data flows. 'The Data Dictionary

40

PP Y W |

B T N N SR S S S

[N P S I A

R LTSS U
Tata actateta”™ O ;'J

L 4

..}

(e

e T R e 2 T T WY ———wr -

Generation Tool is this type of system, liccause of the
intricate data fious assqciatod with the tool, the Data [Flow
Diagram is an e¢xcellent technique for defining the
requirements for the Data Dictionary Generation tool.

The following figures and scctions display and explain
the Data Flow Diagrams associated with the higher levels of
the functional model. The diagrams for the e¢ntire Data
Dictionary Generation Tool functional model are presented in
appendix A,

Data Dictionary Gencration Tool Functional ilodel: Top

Level.
The top 1level of the Data Dictionary Generation Tool

functional model is displayed in figure 6.

User Input—m0 5 User tlessage

Software Aata Dictionar
Representation Information
1

Data Dictionary
_— :
" Information

Figure 6. Top Level Data Dictionary Generation Tool.

This top level diagram represents a vaouce and abstract idea
for the softwarc system., The Obtain and Usc Data Dictionary
Information operation is the process of extracting data
dictionary information from the tool wusers and various
software representation such as S5ADT, Sturcture Chart, etc
and using this information to support the development of

software in each phasc of the life cycle.

41

PO S Y D

RIS VLA

PPy ETY N PEPLPLrP

| .

e Foo

4

y e

"

.

P ad e an e aas
. -_

v m e e e m e g m e ww—y —

Software User User Uscr
Representations \iessages Inputs iiessages
24) /7‘ N

enerate
ictionary
Inputs from
Software

Representatio
1.1

Perform
Dictionary
Functions

1.2

Dictionary
Inputs

Data s
Dictionary
Information

Figure 7. Obtain and Use Data Dictionary Information

Obtain an Usec Pata Dictionary Inforpation

Figure 7 displays the initial decomposition of the top
level of the functional model. This deconmposition sheows the
two primary functions or components of the Data Dictionary
Generation Tool. The Generate -Dictionary Inputs Fron
Software [Representations operation represents that portion
of the tool which interprets automatically the information
content and of various software represcentations and converts
this information into data dictionary inputs. This
operation requires wuscer input to obtain data dictionary
information which might not be portrayed on a software
representation. The Perform Dictionary lunctions operation
consists of thosc tasks which maintain the data dictionary
information. This operation also supports the tool user by
providing a mecans by which information in the data

dictionary can be retricved, deleted, added, and modified.

42

Y A S AP)

VIS SR B wen

A A A A A AN S A A e A alala

L

YT

User Input Error llessage

Software
Representation y Analyze

\\\\\\ Software

~.-Representatiorn ™
1.1.1 ™~ Inconmplete
.. Dictionary
Input
User Response
To Prompts Prompts To
2 User

rror ilessages

Obtain
Dictionary
Information
From User

1.1.2 _
///_//// fav Dictionary lntry
Format /,//'/
Dictionary\, —
Iintry
1.1.3 —

i;kiiimattcd Dictionary Entry

N
Add Untry

To Dictionary

Database

l.1.4 —eeceee .y Dbictionary

Inputs

Figure 8. 1.1 Generate bictionary Tnputs IFrom Softwvare
lepresentations.

Generate Dictionary Input Trom Software Represcentations

Figure & displays the decomposition ot the Generate
Dictionary Inputs [From Software Representations opcration
into its component functions. Initially, the subjecct

software represcntation is analyzed and the data dictionary

43

tat . tatatala &' s s 0

7iv..

(oM e an an mn i . SuEs M aa g
1",1 -
. . . -

-

(@

information available is obtained., Information not depicted
in the software representation is obtained from the tool
user by means of the tool displaying proumpts to the uscer and
the wuser responding to the pronpts. The information
obtained both automatically from the software representation
and interactively {rom the tool user form constitute the
unformatted dictionary entry. This information is then
formatted and added to the dictionary database, which

maintains all data dictionary information.

User Input\\ o //4eror Ilessages

Determine
Dictionary
Punction

1.2.1

User Input L : N Dictionary
’ Administrator

i
P ﬁ Inputs
N
|
i

Interact

Vith e . MAerforn
Dictionary \\ Dictionary
Schema Administrato
1.2.2 I‘'unctions
1.2.4
“Schema Information N~
Changes To Schema !

Interact
Vith
Dictionary
Database
1.2.3

User Input — . Changes

“*To Database

4 Dictionary
Content
Information

Figurec 9. Perform Dictionary l'unctions

44

-4' '.'.. .-.'_..'_: R _-.’\- S U R P R - e R s e - .

- R R T e L TR TP L SO B P S S R
PPN YR R WA N YR -, WS N SR IPAL WAL WL WU A W R WCIRT D. RE WRRSND WS LIE WIS U S i e

A e aas

. . »
S L
[SR SR L SR SO S JEPP S S

aa aaaaa

e o Mm ma e e

-

I RSN

T o bt S L - — Ty PdEar. g " P Ty

Perform Dictionary Functions.

rvvrv.-rf‘—y-,v.v,v—r]

Figure 9 displays the decomposition of the Perform
Dictionary Functions operation into its component functions.

The functions portrayed in figurec 9 represent the functions fin

STV Y Y ey
W
l

P the tool user can request from the data dictionary.
Operation 1.2.1, Determine Dictionary Functions, determines

B and selects the function the tool user has indicated he or

she would like to pertorm, Errors in user input are also
[
' checked by this operation and error messages displayed
r
{ Operation 1.2.2, Interact With Dictionary Schema, allows the
!
& user to obain information about the structure of the
) .
. dictionary and to, if desired, modify that structure.
E_ Operation 1.2.3, Interact With Dictionary Database, allows -
hi Q‘ the user access to the data dictionary information ;;m
E maintained in the dictionary database. Operation- 1.2.4, _
E Perform Dictionary Administrative Functions, performs tasks R
L3S .
p‘ essential to the maintenance of the tool such as sccurity e
Lf and storage scheme sclection.
:;' Lvaluation Criteria)
; In order to measure the success of the Data Dictionary .
- Genecration Tool in mecting its requircuwents, a set of
E_‘ cvaluation criteria must be established. There are scveral
;" parmeters which can be uscd to gauge Lo success of the Data
E Dictionary Generation Tool.
EA The f{irst is the average time spent in learning to use
; the tool. This paramecter will vary frow individual to

T
B~
w

. * e - P et e el . . RN Pt et e . - - c Lt e
[SRR N MO K. A, Mt Sy S A, S, ML S AL P, S UL SISk S, SO, S P il S G UL L A I AR IR L VAT LA N JPUL I I PREL L AP

. individual. llowvever, the anrount of time required for the

average user should be minimal, probably in the range from
two to four hours,

Another —cvaluation parameter, closely related to the
amount of time required to learn the use of the tool, is the
degree of user friendliness the system provides its users.
The Data Dictionary Generation Tool is a highly interactive
tool whose successful operation is heavily dependent upon
the inputs supplied by the tool's users. The user
friendliness demonstrated by the tool should be high.
llowever the degree of user friendliness is a subjective and -
extremely difficult parameter to measure.V

System responsiveness is another evaluation paranmcter

(‘» which should be considered, As stated above, the Data ";@
Dictionary Generation ‘Tool is a highly interactive tool
requiring substantial communication betwecen the tool and the
user. If the tool's responsc time to user inputs is slow, S
it will cause user frustration and dissatifaction. A
slow response time will decrcase the advantages of the tool
in comparision to manual generation of data dictionary

information.

The most dimportant parameter by which the Data
Dictionary Generation Tool should bc measured is how
accurately it maintains data dictionary information. If

the tool allows ecrrors or contributes to errors in data

dictionary information it usefulness is questionable.

40

R e T et e Y™t et . te L . e [P
LA .. LI e o R A T . S e e e e e T e e T PR --. ‘oA ". At e T e T T S e e e
PRSI PRI P A S RIS NP LI I W WA PRI IR W W W PV PG WLV S P SR Sl Sl W S S WS PR Pt . A, S, i

@ 1o

e L R haiaaad 2at N
b () oL
b .

ITII. Preliminary Design

Introduction

Preliminary Design refers to the software devclopment
stage during which the functional framework of the software
system is determined. The purpose of Preliminary Design
then is to establish the functional framework or structure
which will reflect the system objectives or requirements
specified during the DRequirement's Definition Phase of
software development, Within this framework or structure
the algorithms for the software system are integrated.
Without this structure, the associated algorithms would
probably not be able to support the objectives of the
software system. Therefore, the main purpose of Preliminary
Design 1is to provide a sound framework for the softwarce
system.

In developing the Preliminary Design for a softwvare
system, the software engincer will seck to establish a
hierarchial frawmcwork of managerial and functional modules.
The framework begins with a single executive module at the
top of the structure which can call or use other modules
within the software system. These modules may also call or
use other modules. Some modules perform the task of
managing lower lecvel modules while other modules perform the
actual functions required to support the objectives of the

software system, The modules constituting this *hierarchial

47

RN - LR B -, ., o ..' ‘., ., A= o . e N . . A.' L ~.' a t.' -.‘ L. . AN - - - - T
- "a @ 'a o' a'Ww'a’a‘a e 'e®s r a'n'a" 2”88 e s 4 e a 28" M a'a ale s e ataa A e Yl

~

Vi

framework arc linked together by their abililty to call or
use one another. These mudules may pass data, control and
status information back and forth between each other.

The Preliminary Design for the Data Dictionary
Generation Tool will be involved with establishing the
functional structurc for the software system, This chapter
will also discuss a design strategy for the data dictionary
generation tool, This tool is envisioned as a dynamic tool

whicli will be able to cvolve to accomodate new software

developnent methods and their acconpanying software
representations. This design objective will be used in the
initial design of the tool. The dictionary database design
will be discussed at length. The database which maintains

the data dictionary information is an cssential element of
the Data Dictionary Generation Tool. Tor that reason, the
design of the dictionary database is an important issue in
the overall preliminary design of the tool. The development
of the structurc of the software system will be discussed
and structure charts will be used to provide a graphical
representation of the hierarchial framewvork of the system.
The Preliminary Design chapter will conclude with a
discussion of how the preliminary design of the systen
satisfics the objectives and concerns expressed 1in the

Requirements Definition Chapter.

R T A B o e e e o e e e A Tt Bt

Design Strategy

The Data Dictionary Generation Tool is envisioned as a
dynamic tool capable of supporting the entire software
devclopment life cycle. To accomplish this goal, the tool

must be capable of expanding to accomodate the wide variety

of software representations available to the software
designers. The design strategy for this tool must be
capable of not only supporting existing software

representations such as SADTs, data flow diagrams, structure
charts, etc but must also possesss the flexibility to
accomodate software representations which may be developed
in the future. Of course, it is impossible to guarentce
that any design strategy will be able to accomodate a
unknown softwarc ecngincering development. HHowever, by
providing a well defined and logical design strateny, the
flexibility of the tool in supporting new software
representation is greatly enhanced.

The initial step in the design strategy is to gain a
thorough understanding of the software representation in
question., A software representation is important in the
software development process because it provides information
about the softwarc system under deveclopment. The type and
quantity of information provided by a particular software
representation technique will depend upon the nature of the
representation. For xanple, data flow diagrams provide

information about the activities which form a software

49

s “J.‘-A

0 »’ .'
ateta e ad

d ek 2 B

(o

DR ST I T AL AP T TR T N

system and the data inputs and outputs of these activitics.
Data flow diagranms also depict the flow of data between the
various activities which constitute the software system.
SADTs, on the other hand, not only depict the flow of data
into, out of, and btween activitics, but also allows for a
data flow to be classified as a control data input for an
activity. SADTs also provide the necessary conventions for
designating a mechanisms or the means by which an activity
performs a function. As the above exanmple indicates, a
thorough understanding of the nature of the softwarc
representation is essential.

The next step in the design stratégy is to determine
the dinformation content of the data dictionary for a given
softvare representation, A data dictionary is a repository
of data about data. The softwafc representation - contains
information about the softvare system it describes, The
contents of the data dictionary for a softwarc
representation will to a large extent be driven by the
nature of the representation. ' For example, a data
dictionary entry supporting a SADT representation of a
software system would contain information about control data
and mechanisms, This information would not be included in a
data dictionary e¢ntry supporting a data flow diapram or
structure chart represcntation. VVhen determining data
dictionary contcnt, it is important not to let the

information content be limited to just the information

- A e
“t e . IR LT P I S - Se e et T AT T T e s
nttdatadulodraladat ol ol et i e A e A A A e A e N R e W e T T et et et

—a Aaaxa

L

o

PO

T e " L A S At A AL { LR A e TN —T—,—mwme——

contained in the software representation. If the tool user
possesses additional information of value, it should also bhe
included. IFor example,.it is not possible to determine the
data type (ie, <character, integer,) from a data flow
diagram, SADT, or struucture chart. ilowever, if the system
has reached a level of development where the wuser has
knowledge of the data type of a particular data element it
should be included in the data dictionary.

Once the information requirements for the data
dictionary have been determined, the initial design of the
dictionary database can be accomplished. In designing the
dictionary database, an important point.should be kept in
mind, Although the differences in information content of
the various software representations does exist, there 1is
also a great deal of commonalit§ betveen the software
representations. I'or cxample, SADTs, data flow diagrams,
structure charts, and <code all depict the flow of data
elements into, out of, and betwcen activities. Where
possible this commonality should be exploited in designing
the data dictionary database. Ilowever, valuable information
which may exist in only one particular type of
represcntation should not be sacrificed for the sake of
maintaining commonality. This point will be further
clarified when the databasc design for the data dictionary
database is discussed later in this chapter. The objectives

of the initial databasc design should be to structure the

RS
alalg)

e

i

C e L= e e e wmw - e -~ - Lamacame T

database in a manner which rcduces redundancy but maintains
traceability and consistency.

WVith the initial database design accomplished, the next
step in the design strategy is to designate the user's view
of the database information. The user's view, when used in
this context, indicates the manner in which the user
interacts with the data dictionary system. In this step,
the manner in which the user is presented with database
information and the manner in which the user can manipulate
database information are defined. The user will as a
minimun want to be able to retrieve, insert, delete, and
modify the data dictionary contents. Thé definition of the
user's view will also determine the format in which a user
will obtain data dictionary information. F'or exanple, if
the wvser desires to know the inpué data for a particular
act lvity, the view would define tiie format in which that
picce of data dictionary information would Dbe prescnted.
The presentation could consist of the exact data element
nanes of all inputs to the desired activity or it could be
in the form of an activity definition which included the the
names of all input data along with other information about
the activity. The most important point to remenber in
defining the user's view of the dictionary database is to
attempt to present the information in a manner which rmost
cffectively supports the user's nceds.

The uscr's view represcents the manner in vhich the user

.

L N T Y T P U T Y "I TR JPOC IR
CA o, .. . "ot Tt Tat Tt
L e R R) . - .
e toa e

. R ‘.. .‘l . ® " 'A' ,_.' . g "p '.- "- '_- "' ‘_' .“ . . a-_ -.‘ A.. LI . - - -~.
T e S RO SO W Lo SN DN MK WP W PV I SPLPELY WY AP WLV Sl VA Yy DA WIS N SN SN SRS Y.T, - SRR F SRy S S QR Y S Y

]
PURIIPLEPUIP SN VY S TP UY WP NiE TR

g

“

R N P

'
PP PP i |

e N e e e e e e

c e E— e Tw —w— g

n!

A

desires to manipulate or use the dictionary databasec. The
database design represents the manner in which the - 1
information is conceptually maintained. In order to allow

the wuser to perform data dictionary functions, application
software 1is required to connect the wuser view and the o
dictionary databasec. The application softwarc represcents
the dictionary portion of the data dictionary gcncration
tool. The actual implementation of the dictionary portion .
of the tool will be heavily dependent upon particular method

used to maintain the database and the level of user

friendliness the system must support. I'or ecxample, the - 4
database could be designed along either the network, 1
reclational, or hierarchial approach. The user wmight Dbe ‘
required to have technical knowledge of the database -

te A
management system used to maintain the database in order to
manipulate the dictionary information or a wuser friendly

menu driven interface which required no technical knowledge

could be provided.

SRR RSP

The development of the application softwarc to conncct

the desired user's view with the dictionary database should

<
follow the software development life cycle approach. The]
specification of the user's view and the initial database af:;
design will provide an cxcellent foundation for formulating ;
the requircments definitions for the dictiomary softwvarec. 5
With the development of the dictionary software, the ﬁ
dictionary portion of the tool is complete. The information .
L

53 B

B TR I B I I I T Y e e e T e e e e T e e et e
- - - - - - - - . - - - » - - - - . - Y - - * ~, . - -, . . . - - - - . TR VTR
i P VTl Sl Tt Vol S-S S0 ST S T Ses LI W A0 TR TSR A W Y0 B SR NS WP S B Y8 T B A Sl PRI P LR R Dy D T Vs DA T, T W R D |

-

r—

»)

contained in a software representation along with other
necessary data dictionary intormation is maintained in the
dictionary databasc. A dictionary user can perform the
necessary interactions with the database by speciflying
his/her desires Lhrough the user viev. The application
softvare will conncct the user's view with the databasc and
enable the user to perform the desired opcration. The
automatic information extraction portion of the data
dictionary generation tool can now be addressed.

The initial step in developing this portion of the tool
is to determine for a specific software rcpresentation which
portions of a data dictionary cntry fo. tﬁat representation
can be deternmined dircctly from the representation and wvhat
information wmust be provided by the uscr. Vith this

determination made, the basic requirements for this-portion

of the software system have been identified. In order to
obtain data dictionary information from the software
rcpresentation, the software systent must access and
interpret the contents of thc representation. The systen

software mnust then extract the data dictionary information
and convert it into a form suitable for insertion into the
data dictionary database. The software systen nust
communicate interactively with the uscer in order to obtain
data dictionary information vhich can not be derived from
the software rcpresentation.

The design stratepy presented here 1is intended to

A e Nt

NP |

e

TN S P

PP W L]

o

vt

)

R

provide an approach to follow in expanding the tool to
accommodate new software representations and their
associated data dictioﬁary information, The following
sections in this chapter will be concerned with developing
the database and applications software for the initial set

of software representation to be supported.

Data Dictionary Information Content

The Preliminary Design of the Data Dictionary
Generation Tool will attempt to support four diffecrent types
of software representations and their associated data
dictionary information. The software representations to be
supported are SADTs, structure charts, data flow diagrams
and codece. SADTs,data flow diagrams, and structure charts
have been described earlier in this paper. The code
software representation 1is the actual source code which
makes up the softwvare system in question. This
representation is formulated during the implcmentation phase
of the software 1life cycle. These four softvare
representation wverc sclected because of their widesprcad use
in the Dcfense Community.

t'hen discussine the dictionary content for cach of
thesc software represcntations, it is useful Lo consider the
information for the data dictionary as being in one of two
categorics. The first catenory is actions, which contains

all information clements about the various functional or

. e . K3 . e - L PR
C Tt te ee a e e R T T S S
. o -

L
A e’ Tes s anMan

N . . - . . o« * n” a P ,'.. - o o L., AP .~-~. . o o PR
PPN ST VY S FOAC TP P, P Sull, POV SR, SR, S SN PP MUL FL So S A, OISO VR JUNE VRt Y Wat N SRR S R A

La Al -

A e a'a miana s

p
3
3
3

managerial modules which make up the svstem. The second

information category, data, represents the information which

4
M]
the action modules usc or manipulate in performing their
various functions. Poth categories of infoerration <contain
elements which relate data and actions to each other., For j

example, action information would identify the data inputs

and outputs of a functional module. Data information, on]
b the other hand, would identify the action modules which used]
f.
or manipulated a particular data item.
1 Because of this categorization of information within
:]
{ . : .
} each software representation, the data dictionary }
® | |
information desired for each rcprescentation will be ;
]
discussed from both a action entry and data entry point of ‘
view, The discussion of the informaton content of both the . 4
action and data portions of the softwvare representation will
show that a large degrec of commonality exists betwecen the coe
various representations, In addition, a large deprce of g
4
commonality will also be scen btween the action and data
information content. The complcete listineg of cach |
1
representation's action and data information clements 1is 1
presented in figures 10 and 11,
In discussing the various inforwation colements that
make up the data dictionary contents for the various
software representations, those clenents which areco connion T
across the range of the three representations and those DY
which are also common among the data and action information
.
_’\
50 E
"
9
3

- --- '.. . . " B - . -- '-. "-» l-‘ q-' --- '-‘ —. . - '-. .- - \‘ . ‘.V - ',. ‘~> . - s
- - - - - . - - - " ~

P WL I PP PR VWP WAL SRR D T YRR APPSR AL WL WAL)

L.

- -

adaata

categoriecs for all represcentations will be discussed first,
The following paragraphs will describe each of these
information elements and cxplain its meaning or value as
data dictionary information. It is important to remenucr
that these information elements are present in both the data
and action information categories in all three softwvarec

representations under consideration.

Project.

The project information element identifies a group of

> software developers who are responsible for entry of

r information into the dictionary database. The project -
e .

» identifier is important because it allows more than one

group to be working on the same software projecct at the same

. time. The designation allows different groups to use the .
@ (o |
[same dictionary database without having to be concerned
1
S about interferrine with the work of another group,. This <
Bi capability is especially important when the the data '
dictionary dis being uscd to support a large software
3
L development effort,
s Name
@
b
Hame is the title given to the acitvity or data
element represcented in the dictionary databasec. The name
b.
‘- clement associated with an action or data clement should be
A
f unique in that no other data clement or action should have
N) Y
the same namc. The name information element should, to the

extent possible, describe the data element or activity it

v fi

o

(]

e

«

LR I e B S

——— "

represents,

SADT Data FPlow Diagran Sructure Chart Code)
Project Project Projecct Project

liumber Humber Humber llumber R
Name lame Hame dame o
Inputs Inputs Inputs Inputs .
Outputs Outputs Outputs Outputs 1
Conrols

Hlechanisns
Description
leference

Alias
Parent liode
Child llodes
Date

Originatced
Original
Author
Hlodify
Date
Hodify
Versions

Fipure 10.

Description
Reference
Alias

Parent liode
Child Hodes

Date
Originated
Original
Author
llodify
Date
lodify
Versions

Software

Information

Description,

The

which

description

describes

an

activity

Description
Reference
Alias

Input Flags
Qutput Flags
Global Data
Used

Global Data
Changed
Algorithm
Parent HNode
Child liodes
Called Dy
Calls
lfardware
Read
liardvarc
Vritten

Date
Originated
Original
Author
ilodify
Date
liodify
Versions
Representations Acti
Llcments,

inforuation element is a

or

data clement contained

Description
Reference
Alias i

Global Data

Read

Global Data

Vrite :]
Algorithm .
Called by

Calls §
Hardware - £
Read

Hardware
Viritten
Progran
Language
Date 4
Oripinated
Oripinal
Author
dodifvy
Date .
dodifly |
Versions

on rntity
text input !
in the

'

PR S A R I SUSPLINY S'S U I

data dictionary.

to define

nature of a data clement.

The description is the developers attenpt

the function or purposc of an activity or the

SADT Data Flow Diagram Structure Chart Code
Project Project Project Project
Name Nane Hame Name
Description Description Description Description
Sources Sources Passed TFrom Passed From

Destination
Composition
Part Of
Data Type
Miin Value
Max Value
Valule Set
Alias

leference

Original
Date
Original
Author
Hodify
Date
Hodify
Author

Figure 11,

Aliases,
An alias,

another name for an existing

use of an

dictionary

Dstination
Composition
Part Of
Data Type
liin Value
lfax Value
Value Set
Alias

Reference
Original
Date
Original
Author
fiodify
Date
[Hodify
Author

Software
lenents

when used in

software

Represcntation

system

Passed To
Composition
Part Of
Data Type
iin Valuce
vlax Valuce
Value Set
Alias
Storage
Type
Reference
Original
Date
Original
Author
ilodify
Date
Modify
Author

alias can cause confusion in

should be avoided wvhenever possible.

The remaining {ive

information

Pata

development.,

clements

Passed To
Composition
Part Of
Data Type
viin Value
ifax Value
Value Set
Alias
Storage
Type
Reference
Original
Date
Original
Author
Hodify
Date
ilodify
Author

Information

a data dictionary context, is

activity or data eclement. The

the data

Their use

which are

common to both the data and action information clements of

i

S g g

i

Y

o
B
Lo aata g a2y

'

- e

the three software representations under consideration are
concerned with maintaining a historical record of the déta
element or activity they describe. The date originated and
original author information clements identifly the time and
person or group that initially entered a data element or
activity into the dictionary database. In a similar
fashion, the modification date and modification author
identify the time and person who made a <change in the
associated data or action entry. The version information
element i1dentifics cach modification made by indicating its
sequence. For example, the initial entry.of an activity or
data element would be identified as version 1 while the
first modification to the initial entry would be designated
as version 2,

The next group of data dictionary information eiements
discussed will be those data information elements which are
common among the three softwarc representations. The first
four of these elements scek to describe the actual value

which will be associatced with the data clement,

The data type information clement describes the basic
characteristics of the wvalucs associated with a data
element, IFor example, if the data elcment value was either
true or false then the associated data type would be
boolean. In a similar fashion, if the value was always a

number the data type could be, depending on the nature of

60

T M s —— LRI Sam Sonns w LANIES S Shen e eascaee s ave aen o

the number, either integer or real,

!i The Min Value and ilax Value.

s g
:n The min value and max value information elements

..

- describe the highest and lowest values the data element can

represent. If the ©possible values for the data element

order were whole numbers between I and 10, the min value for

data element order would be 1 and the max value would be 10,

i; Value Set.

The valuce set information clement is uscd when a data

! element can only assume a limited number of values. For -

g

} example, if due to the nature of the software systen the .
data element could only assume three values: high, low, or .

medium, then the value set for the data element would

contain each of these three values. . : :

It is important to note that a data element will not
always have a value set, min value, or max value information
element associated with it. liovever, these information)
elements do provide valuable information in certain

situations.

Composition and Part Of.

The compositon and part of data information clements
provide data dictionary information about the make up of a
data elcment and it relationship to other data elecments,

For exanmple, the data element cuployee salary could be

considered as part ol the data clement cmployee pay. In a

similar fashion, employce pay is composed of employece salary .

61

.. - e . - e R . e v,
. B I TN e e . L T

. . - - - - e S . ’
e T e) RIS . . e o T e P S I P . R
UNEL IS WL W WL . L L . WA L R P AL ‘-(‘A =P SO L. SR W TG S L AT LT DT AR PRI VA WA ¥

as well as other data elemcnts such as employee social

security number or employee namec.

.
3

Sources, Destinations, Passed From, an assed To.

—_— v e

The source, destination, passed from, and passcd to
data information elements describe the flow of data into,
out of, and between the various functional and manaperial
modules which make up the software systemn. Although these
data elements are common in all three data portions of the
software representations, therce is a naming inconsistency
which could 1lead to confusion. The SADT representation
calls activities which output data elements sources and
activities which accept or 1input data elements as
destinations. Structure charts and code, on the other hand,
designate activities outputting data clements as passed fron
and activities inputting data eclements as passed to. The
use of different terminology is not important because the €>°
meaning the information elements are the same in all three g

representations.

The next three data information eclenents discussed:
requirenments #, SADT data elecment, and SC parameter, provide
a trace capabiltily between the threc represcentations and

more importantly a recfercence between the various stages of

software development,

Requirement .

? The requirement # data information element is used to

.- L. . . o e e e s e s .
. PR T e e e e T e T e e Y e YT N T e

D T T A P N T P ST TR e BN
P PN PEERE DA T VRE SN AL YL VR RE A M WAL SR W K R R SRS P S . - *

ﬁ"""‘" T . A 4 Balidi Bl e N Ak A AR AL M S AR Al SES Sfiairie < ~ A g B B e s

reference a data element used in the SADT representation to

r a previously defined requircment, This requirement _
{ . s
’ represents a stated objective or goal of the system which

; was formulated by the system developer and/or system user.
The wuse of this information clement identifies a system e
requirenment which the subject data clement is intended to

help resolve. Linking system requircments to a SADT data

o R

element 1is appropriate because the SADT representation 1is

)
widely wused in the requirements definition ©phase of the |
E sotware lifecycle.
SADT Data Iteuw. - i
L . '
I The SADT data item information eclement rclates data : 5;
elements wuscd in the structure chart representation to a :
-
Lh ... data element sed in the SADT representation, The __"j
L rclationship between these two represcntations is h _i
E~ appropriate. The hierarchial structurc in the structure :3
E chart representation nmalies it a valuable tool in the design ,“u;
E phase of software development. The link between these two ‘
? representations allows for a tracing of data elements as ?k{%
; they develope from the requirements phase to the design ‘i
: phase. j
:ﬂ SC Parametcr. ;
s ¢
; The SC parameler data information elenment relates the %
‘ actual data clement or variable wusecd in the code 5
representation to the corresponding data eclenments or 5
; parameters uscd in the structure chart representation. The i
" p
” 63 |
»

S et T e s e e e e et St e ettt s e s T T T S T Ty

R S T L S ST R ey s e s e T AP
(SIS SN SR AL, Ty H PR S0P PR ST S WK T S SRS S WA SRR ST W WP S T Tl Ve . AP PN AP PR RV DV P PR APRL SR R R SRR e A AT M,

v—av-.iv-

information element allows for the linking of information in
implementation phase, represented by the code
representation, to corrésponding information in the design
phase, represented by the structure chart representation.

The value of the trace data information elements is
especially valuable in the error correction and modification
of softwvare systens. For example, if an error is detected
during the implcmentation phase the crror can he traced back
through the design and requircments phases. This will help
to ensure that the error is removed completely from the
system and enhances the designers abiltiy to track software
problems to their source. Vhen a modification to a software
system is proposed, it is extremecly valuable to be alble to
determine the overall effect of the modification on the
entire systen. By tracing the cffected data clements
through all phases of development, the designer can better
determine the influence, both positive and negative, that a
modification will have on the systen.

Storage Type.

The final data information eclenment to be discussed 1is
storage type, This information element is common to the
structure chart and code software representations., The SADT
representation does not contain this information clement.
Storage type represents a classgification of the data element
as it is viewed or uscd by the software systcun, there are

two classifications associated with this information

Ao . —a - -

Aa &

ah

. Lo .
Coe e e
e e s 0. L
s - At atatala’a s A al UL 4 ek e

vy 7

.
:
4
®

element: passed and global. The global classification
indicates that the data element value can be both accessed
and changed by any portion of the software system. It is
known throughout the system and can be used or changed by
any functional module in the systert. The passed
classification indicates that the data eclement is only known
in a portion 2f the system and for its value to be either
used or change requires that the data elements value and
type be passed or sent to other portions of the systen.

This completes our discussion of the information
elements associated with the data portions of the software
representations. The action information-elements will now
be discussed. As before, the action information elenents
which are cowmmon among the four representations will be

discussed first.

Inputs, Outputs, Input Data, and Qutput bData.

The inputs outputs, input data, and output action
information elcments identify the data elements which a
action or activity wusecs or produces in performing its

function. As the names indicate, the action takes the input

data and wuses or manipulates it, The results of the
activity arec the output data wvhich flows or is passed out of
an activity. The SADT, DI'Ds, and code representations

designate the data elcments associated with an activity as

inputs and outputs. Structure charts, on the other hand,

65

. e T e T e e e e te v e e el et e e e
P T Tt e T et et e e T T e

. STt e T «*a P I I T SR AR AP A S S Eal R S S U S - SR
A SN SR APPSR RS I P R R A . VAL AT T TR T RS R TP U W TV S ST L. SR . . Sy

Ao a a

b ohod

IR

W PR)

ata’ala M

Y

et

use the naming convention input data and output data. SADT
rcpresentations usc another input data designation known as
control which is not presént in the structure chart and code
representations. This information element will be discussed
later in this section,

Parent WNode, Children Wodes, Called By, and Calls.

The parent node, children nodes, called by, and calls
action information elements depict the composition or make
up of an action. Parcent node and children node are terms
used in the SADT representation to depict the logical
decomposition of an activity into its component parts or
children, For example, the activity Find Average could be
considered as a parent node with the <children nodes Read
Entry, Add To Sum, Divide By Number of Intries. The
structure chart and code represontations use the terms calls
and called by to depict the composition of activitics. The
term call is normally associated with the usc of an activity
by another activity. This meaning is slightly different
from the parent/children scheme used in SADT. Although this
difference does exist, both sets of terms still depict a
composition relationship and contain sufficient commonality
to be grouped together.

Requirement i, SADT #, and 5C 4.

The requirenment i, SADT &, and SC § action information
elements provide a tracc capability between actions depicted

in the thrce representations and the rcquirements, desian,

60

and implementation phases of software development. These
. information clements scrve the same purpose for the software
system's actions as the requirements #, SADT data item, and
sSC paramecter information elements did {for a software
I- system's data elements. This completes our discussion of
the action information elements which are common among the

three software representations.

L The next two action information elenments
fu
discussed,controls and mechanisms, are only present in the
j action information for the SADT representation. "The control]
; action information element is depicted as an input to an i
L
: SADT activity. The control information ceclement identifies
input data flows which an activity uses to <control its _:J
hi (.- execution, For example, a control input could be used to *"*I
o ,
determine the flow of cxecution inside the activity, The A
-~ L
mechanism action information clement is also depicted as an R
hi input into an activity in the SADT represcntation. A S
<
. mechanism represents the means hy which an activity perfornms
, its functions. k
The discussion of mechanismns and controls completes the !
]
discussion of information clements, both action and data, B
for the SADLT representation., Ye will now turn our attention
back to the action information clenents and discuss Lhosce
1
clements wvhich are cowmon in both the structure chart and 3
3
9
code representations. R
Y
)
Global Data Used, Global ata Changed, Global Data
22004 CALILL SN il RALLLIE S LR KL e lat A Heaks i
. N
. Y
- "
07 .
9
-
B P T S A T IIEA P R P S R A A R AP S A S N SN A

As
elements
activity
elements
present
the syste
elements

effect

Global Data YUritten.

discussed carlier, global data refers to data

which «can be both accessed and changed by any

or module in the software system. Vhile global data
are extremely handy

in developing software, they do

an opportunity for introducing scerious errors 1into
m due to their casy access. The action information

global data used and global data changed depict the

-
O
.
g

an action or wmodule has on a global data clement in

the structurc chart representation. The action information

elements global data rcad and global data written perform

the same function in the code rcprescentation.

Algorithm.

The algorithm action information clement is a text

dscription of the method or manner in which an activity or

module performs its function. I'or example, if the function

of a module was to calculate the average cmployec salary the

following formula could be use to describe the algorithm:

total salary all ecmployec/number of employees = average

enployee salary.

Files Read and

Files Written.

The files read and [files written action information

elements represent the obtaining of information and the

outputting of results to and from existing files in the

system by the action or modulc. In many cascs, an activity

will obtain input inforwation from a previously created file

D [T I R e I AL D s "

B > PP

- St et et et et T e A “t . et LI VN VL YR VR SR} -
RO e S R S O LR
- Al alacaata ataa’etata atnaas gttt atataTw

.

OB T Y

)

R UL I B R A At B g T ———

in the systecnm. The action information element files read
identifies the name of the subject (file. In a similar
fashion, once an activity has completed processing its input
information its outputs or writes the results to a file.
The action information clement files written identifies the
name of this file.

llardware Read and liardware Vritten.

The hardwvare read and hardware written action
information clements indicate the idinteraction of the
software activity with the computer harecdwarec which supports
the system, An exanple of a hardware read or hardware
written information could be an input/outbut port nunber,

This complctes our discussion of the action information
elements which are common betwecn the structure chart and
code representations. The remaining action inférmation
elements arec unique to a particular representation.

Input IFlags and Output Flags.

The dinput flag and output flag action information
clements indicate the usc of a boolecan data element to send
control dinformation to an activity. 'or cxanple, mnmodule
error check <could send a boolean data element to another
module to indicate that no crror cxists, Input and output
flag information clements arc used in the structurce chart

representation.

Program Langu

=)

ge.

The rogram languane information clement indicates the
- ¢

69

o«

IV SN

LY Sy

actual program language which is used in writing the source
code for an activity or module. Examples of the progran
language information céntent arc: Pascal, lortran, and
Cobol.

This completes our discussion of the information
elements which constitute the data dictionary informnation
for the subject software representations, This discussion
has briefly described these information elements and pointed

out the comnmonality which exists among the representations.

Database Design

In the previous scction, the infornation content of the

data dictionary was discussed in detail., This provided a
clearer wunderstanding of the tyﬁc of dinfornmation the
dictionary databasec must support. The previous scctions also
identified numerous areas where the information content of
the three subject represcntations are conmon. By defining
all common areas, the identification of thosc information
elements which differ among the threce representations made
more meaningful. Vith this background, the lopical
structuring of the information in a manner which hest
supports the dictionary database can begin. The process of
logically structuring the information is known as databasc
design. Two of the major goals in database desiagn are to

reduce data redundancy or information duplication, where

70

P P e L A R PR R . T R A R T S N O
Ca e e s Mo BBt o Bt Bt b B B SR R hrel Nt AN ataSata®aata a'atadsta’aatatatae _atala"as 4 a*

— T - ————r—

possible, and to strengthen data independence, the lack of
data structure dependence on application softwarc.

There arc thrce basic approaches to databasc design:
relational, hierarchial, and netwvork (17:63). "The
hierarchial approach sces a hicrarchy of objeccts as the most
typicallly useful data structure. Relationships betwveen an
object and several subordinate objects, e¢.g., between a
manager and his or her employees or betwecen suppliers and
the parts they supply, are hicrarchial relationships...
(18:97)." The hicrarchial approach views the data structure
in the databasc as a scries of parent/children relationships
which is often depicted as a simple tree structurec. The
advantages of the hierarchial approach are: the fauwiliarity
of many users with the hierarchial structure and the
significant decgrec of data indepcnﬂencc supported (19:1006).
On the other hand, the major disadvantancs of the
hierarchial approach arc: the manner of dealing with many
to many relationships is clumsy, the Dbasic database
operations such as insertion. and deletion are overly
complex, deletion of & parent eclement results in the
deletion of all information about its <children data
elements, and information about a child is accessible only
through its parcnt (19:100-109).

The network approach sces ",..hicrarchial relationships

as a special case of a networl relationship between objects,

For exanple, in a manutacturing application cach part nay

71

LI IR WO T SUAP UL R DAL N, LT UL L TR S L, S VR TR ST VoA VAP S VU W ML LN AL P

rT'A' e
&“ 'l
"
3
L'-
o
3
%
b
3
5
3
=
i}

.0

E f

3

S

have many suppliers and each supplier may supply many parts.
Each of these relationships is hierarchial, however, the
overall relationship between suppliers and parts is a
network relationship, A netvork system assumes that each
object may participate in network reclationships" (18:97).
The major advantage of the network approach is that it
easily implements the many to many relationships which exist
in real life. "The main disadvantage of the network model
is its comnplexity. The applications programmer must be
familiar with the logical structurc of the data base because
she/he has to "navigate" through different set occurrences
with the help of connector type rcéord occurrcnces"
(19:121).

The relational approach does not "distinouish Dbetween
objects and relationships. Th6> basic construct is a
relation, or group of related data elements., A relation nay
represent an object, say a part, or a reclationship, such as
the relationship between parts and supplicrs" (18:97). The
major advantage of a rclational databasec is its simplicity.
The relation can be equated to an information table which
greatly enhances wuser understanding. Other advantages
associated with the relational approach are that it provides
a relatively higher degree of data independence than the
hierarchial and network approaches and that it is based upon

a well developed mathematical theory or relations

(19:95),

The relational approach was used to design the database
for the data dictionary gencration tool. The relational
approach was sclected becausc of its simplicity and case of
understanding. In the relational approach, information is
organized into tables or relations. A table or relation

contains information elements which are related or logically

belong together. The colunns of the table represent the
attributes of the relation. The rows or tuples of the
relation represent single entries into the relation. Ior

example, a part reclation could contain attributes which
describe a part such as part number, <color, weight, and
quantity. A tuple in a part relation would contain values
for the various attributes which apply to a specific part.

Figure 12 provides a graphical display of these concepts.

Part Relation

Part Number Part Lame Color Height Quantity

62ABY holt red 20 12

3GC1F screw blue 5 9

4911Vo nut white L 20
Figure 12, Lxample Relational Table.

The organization or information elcments into tables or
relations closcly parallels the manner in which humans think

about information organization, Because of this, the

. e . .-'-.'.- PR - - et o, - TR PR o .. . - St e te et Lt t
LIRS A, K S A A S AP AP LA AP I YL D WAL WAL S N ST SO W L MY ol PR T)

TR T N L T T T —— ?

Aa o oo

. .
Aa s s hla o

PP AN WP

RPN AN Y

. IR
o ‘e s e »

4 g g

L i A e R AR S Sl atdn aem g T T— I e A0 She Bno B 20 o o

2

relational approach is easicr to both understand and use
than either the hierarchial or network approaches to
database design.

During the first part of this chapter, the information

a
e

fendinte Ak b

elements essential to the data dictionary database were
identified and discussed. The database design problem is
concerned with organizing these information clements into
relations or tables in a manner which supports the functions
of the data dictionary, reduces data redundancy, and
enhances data indecpendence.

"The ©process of crystallizing the entities and their
relationships in table formats using relational concepts is
called the normalization process. llormalization theory 1is

Lo based on the obsecrvation that a certain set of reclations has ." 1
better properties in an updating environment than do other
sets of relations containing the same data (19:91)."
NHormalization concepts provide a useful aid in the fkh%
organization of information e¢lemnents into tables or
relations which can be supported by a relational database.
Before <discussing normalization any further, it is
important to understand the concept of key attributes in a
relation, A key 1is an attribute or combination of
attributes with values that are unique within a relation and 1

can be used to identify the tuples of that relation (17:87).

Consider a relation which contains information about parts

(Figure 13A) which contains the attributes part name, purt 3

h

N

74 T
TN

1

DT T N P R T T Tl T BN e S PR e . N T T
C et et et a et e IR IR L I R PR T IR TR S S SRS S ,~',~',"'.‘ D T T - - - N P A L .
PP PP P PR L L YT P PR P GO S G R SR RDE RS AL LWL SRR AR O S UL AL SR G

R e

oY ovow ',".'T‘ D

L TR T DAL P ST o LI I et R
PR R P P PR P A P O P P VA WA D K VT R Wil o i o g S Wy . Sy

I e e

T TR A - T T T T T T T

number, part color, and weight. If the part number uniquely
identifies each tuple in the relation then it, the part
number attribute, <can serve as a key for the relation.
How consider figure 130. In this relation, the part number
alone is insufficient to uniquely identify each tuple in the
relatijon. In this relation, 2 combination key consisting of

both the part number and part color attributes are required

to identify the individual tuples in the relation. "liot
every relation will have a single attribute key. However,

every relation will have somc combination of attributes
that, when taken together, have the unique identification
property.... The cxistence of such a combination 1is
puaranteed by the fact that a relation is a sct. Since sects

do not <contain duplicate elements, each tuple of a given

relationship is unique with respect to that relation, and
hence at 1least the combination of all attributes has the

unique identification property (17:568)."

P . P - e e e T . - IS -
P O L R e D TR PR - e DA N
PN . s o - . WY R P T UL SR A R |
et et m DR N AT I P I S I L R N et e w
N - o e Te e Te T e S -
LY .

VPRSI R

P .
PORAEY .
P S T e R A TP

; L

i
- 4
b

£ »
d
1
4

¥
B
©4
,'-.j
R
4
[,,A..-..i

—— i

T T T T T T NI T AT T T T e T ST BIC R T ~ P B D Pl T Pl = '.'j-‘
3
-
- ~ 4
A. Parts Relation 1 :
Candidate Xey Candidate Key o
Part Name Part liumber Color Veight .
bolt . 124 red 6 -
screw 138 blue 5 i
- 1
nut 159 green 3
A
B. Parts Relation 2 .
Primary Key Primary Key b
1
Part lame Part lumber Color Weiaght o
bolt 1246 red o :
bolt 12406 blue 6 .
: 1
bolt 5392 blue 4
|
C. Shipment Relation
. Primary Key roreign Key —————
(o . .
Shipment ¥ Part {lumber Quantity -]
21 124 2067 .
25 159 1200 O
Figure 13 Use of Keys In Relations. K
Figure 13A illustrates another situation vwvhich often
arises in a rcelation. The attribute part nawe also
possesses the property of being unique for cvery tuple in
the relation, In this situation, the relation is said to R
.‘ - .‘
possess two candidate leys, part name and part number. In o
this particular situation, it would be appropriate to -
76 :
e e e T e e e e

Ty T T W W T —— i — -

designate onc of these attributes as the primary key and
the other attribute as an alternate key for the relation.
Figure 13C illustrates another wusc of Lkeys in a

relational database. Relation shiprent contains the

attributes part number, gquantity and shipment . Hotice 3
that the attribute part number in this relation constitutes
an index into the parts relation illustrated in figure /34.
An attribute such as part number in the shipment rclation is
known as a foreign key into the parts relation, Foreign
keys are useful in designating relationships between]

different tables or relations in a relational database.

N,

It is important to rcalize that tuples in a relation T
represent entities in the real world. For cxample, a tuple ffij
in the parts relation represents information about a -]

particular part that could be used or produced by an

organization, In a similiar fashion, a tuple in the -
-~ -4
shipment relation provides information about the content and 3
. -
size of a particular parts shipment. The keys which exist o

in these relations serve as a unique identifier for the T

entities represented in the tuples of the various relations.

Keys are an important concept 1in the relational

-‘ W v' »Y ‘

approach to database design. Becausc of their importance, fﬁ;ﬁ

ﬁ.“ i

two important inteprity rules are imposed. Inteprity Rule 1

ﬁﬂ , is concerned with maintaining the integrity of entities. 1t

simply states that no component of a primary key value may

be null in a tuplc of a relation (17:88). Decause the key

77

AT e et AT, . R N T O N R R ST RS LN S RS

T T L T e T T T T e T T T T e T T T s e
W IR I WA AT, . AR AL R E PR AL A S S S A S AR R A W RTINS AP LIPS L PG . PR P W P P O O - v

~—-‘-v- ~vrr

I
P

‘n

serves as a unique identifier for each tuple within a
relation, an identificr 'which was null in valuc would be a

contradiction in terns and can not be allowed.

Integrity Rule 2 is concerned with maintaining
referential inteqrity. It is common for one relation to
contain references to another relation. For example, the

shipment relation in figure 13C, by means of foriegn Lkey
part number, 1is able to recference the parts relation shown
in figure 13A. 1f the part number value in a particular
tﬁple of the shipment relation did not cxist in the part
relation, it would be a violation of referential integrity.
The subject tuple in the shipment relation would be
describing a shipment of parts which, as far as the parts
relation was concerned, did not .cxist. Simply stated,
Integrity Rule 2 specifies that if a tuple in a relation
references a tuple in a different relation, that tuple must
exist (17:90). To state this in another manner, an
attribute which represents a foreign lkey key may only
possess a null wvalue or a value wvhich exists in the
referenced relation.

Vith an understandine of key attributes in a relation,

the discussion on database design and the normalization
process can continuc. As stated earlicr, normalization is
the process of grouping data eclements into tables

"

representing entities and their rclationships. I'he reason

one would use the normalization proccdure is to ensure that

e 2

.
LY

»

.
S 2
it ol k.

L A T T B S A A B e San Sae IhBe SRR S Jhen A B Chuie S 5t Jinn Jher maae Jumes Avien e 2e e — = —

A

PPV T

the conceptual model of the data base will work, This

means, not that an unnormalized structure will not work, but .
only that it may causé some problems when applications

programmers attempt to modify the data base (19:130)." :[EH

-

Hormealization theory 1is built around the concept of lﬁ
normal formns, A relation is said to be in a particular
normal form if it satisfies a certain specified set of

constraints.

"Humerous normal forms have been defined... Codd
originally defined first, sec0nd, and third normal forns

(18F, 2NF, 3ilF)...." (17:238). Figure 14 displays the . 3

currently existing normal forms, - f

]

Universe Of Relations llormalized And Unnormalized ‘

te 1 IF Relations -.m:

7 T lelations

R PR

3 HF Relations R

Cld

BCHF Relations . A

4 i'f Relations T 1

PJ/IT (5 1iF) Relation z

1

Acitdied ccdenedh o

"

Figure 14, HNoraal TForms

.
aad

79

Lol

A e e Tttt e tat R T I L N O P P P P et .
A e CRS A - PR iy M R R TS PN R L S AP i PR L B Py P PO

v.j

CHEN 2 Ants g 4

- - = W - - T Y

B e 0 o S Jina B S 2 o Ty

As figure 14 suggests, "all normalized relations are in

1iil'; some INF relations arc also in 24F; and some 2iF

relations are also in 3NT. The motivation behind the
definitions was that 2HF was '"more desirable" than
1dF,...e,and 3" was more desirable than 21T, That is, the

designer should generally choose 3ilF rclations in designing
a database, rather than 2HF or 14F relations (17:238-239)."
For the purposes of this investigation, relations were
only formally normalized to the third normal form.
However, other normal forms do exist and are displayed in

figure 14 and briefly summarized below,

"Codd's original definition of 3iF suffered from
certain inadequaciesS.... A revised (stronger) definition
due to Boyce and Codd, was given... -stronger in the sensc

that any relation that was in 3iF by the new definition was
certainly 3KF by the old, but a relation could be 3UF by the
old definition and not by the new. The newv 3lLF is sometimes
called Boyce/Codd iHlormal Form (BCIHF) to distinguish it from
the old form. Subsequently, TFagin defined a new "fourth"
normal form (4lI') and more recently another form which he
called "projection-join normal form" (PJ/UI, also know as
S5iHir) (17:239)."

As stated carlier, the data dictionary databasc design

considered only the first three normal forms to be
important, bDefore discussing the meaning and constraints
80

AL AN e T
. . ot

- . -~ % -
W SN R R LS

- A RIS R
~_.. Sl P JRFC IR ST SR T
™Y

N G

R
e
3

B IR

R

associated with these normal forms, it is important realize
that normalization thecory does not constitute a hard and
fast process for database design, but rather a set of
guidelines which aid in the design process. "Jormalization
theory is a uscful aid in the design process, but it is not
a panacea. Anyone designing a relational database is
advised to be familiar with the basic techniques of
normalization..., but we certainly do not sugnest that the
design shouldbe based on normalization principles alone
(17:238)."

A rclation is in first normal form'(lHF) if and only if
all undorlyipg domains contain atonic vﬁluos only (17:243),
To state this din another manncer, every value in the
relation, each attribute value 1in cach tuple, is
nondecounposable so far as the éystcm is concerned. A
relation is considered to be in first normal form when there
exists at every row and column position in the table only
one value, never a sect of values.

A relation is in sccond normal form if and only if it
is in first normal form and ecvery nonkey attribute is fully
dependent on the primary key (17:2406). This means that a
rclation 1is in sccond normal form when the value of the
primary key attributes destermine the value of the other

attributes in the relation. [For example, the part relation

shown in figure 13A demonstrates this idea. The primary key

sy part number detecrmines the value of the other attributes

)

PN SN S S T S

I SN,

»

S S SNSRI

T

& in a particular tuple of the relation.)

|
f A relation is in third normal form if and only if it is 1
{ - :
- in second normal form and every nonkey attribute is

nontransitively dependent on the primary key (17:248). Vhen

& one nonkey attribute can be determined with one or nmore ifﬁ
?l nonkey attributes, there is said to be transitive functional
dependency between the two (17:247),. As an example of a

relation which possesses transitive dependence, consider a i
relation named supplier. This relation contains three
attribute fields: supplier number, c¢ity, and status. In

this relation, the primary key is supplier number and city : ;

and status are nonkey attributes. As a condition of this]

relation, assume that status is detcrwined by the city in -f?

wvhich the supplier is located. Lased upon this condition, il

(o | T

the status attribute value can be determined by the primary 1

key value or the nonkey attribute valuec for city. Although]

the «c¢ity attribute value is determined by the supplier “uj

number, the fact that the status value can Dbe determined f

from the «city value leads to a situation where transitive t}

d

dependency exists, S

A method of removing this transitive dependence is to .,j

decompose the gupplier relation into two new rceclations, };

supplier city and city status, 'igure 15 displays both the 35

original supplicr relation with transitive dependency and 1

the two newlv formned relat:ons in third norwal fsrn.

82

R T R S e . e e . e e . s L. et .t o
S T T S . T B D L S e e e T

Sy S
- . . e - -. o -, LN »' . - . LA . . . - oAt . . . AT T et . . - . Tt e BT S P P .-t * -
h e e e B B SV S SV N0 S SVRSP WA RV 36 30 S A0 ol 20 PSP ST PRIPA WPOPRUI LRI M RN S S S A DA

Supplier Relation

Primary Key

Supplier Number City Status

21F ¥With Transitive Dependence

City Status Relation Supplier City Relation

City Status Supplier Lumber City

Jew Relations In Third Hormal Form

Figure 15 Transitive Dependence

The design of the data dictionary databasc utilized the
normalization process in formatting all relations to at
lcast the third normal form. As pointed out carlier, the
use of the normalization process alone will not ensure a
good database design. Rumerous factors and trade offs comnc
into play during the design process. An important point to
keep in mind is the intended purpose of the database wunder
design. A thorouch understanding of how database
information will be used and changed in the course of normal
opcrations 1is cssential., Also of primary concern is the
effect the .databasc degipn will have wupon applictions
software written to interact with the databasc. In the
following section, the data dictionary database will be

presented and discusscd.

83

.
l
'

1

il
T
-

a. S

Data Dictionary BPatabase

In this section, the relations which makecup the
dictionary database are discussed,. The contents of the
rclations and how they solve the problem of wmeecting the
information maintenance recquirements for the various
software represcentations are also be discussed. The
alternatives considered when designing the database are
presented and the rationale for makiny certain design
decision arec discussed.

When the information content of the dictionary was
studied, it was reccognized that a great deal of commonality
existed among the various software representations which are
supported by the data dictionary. g¢eneration too;. In
discussing the rclations which make wup the dictionary
databasce, initial discussion [ocus on thosc relations which
the software representation have in common. Discussion will
then be dirccted to thosec relations wvhich are wunique to
specific software representations,

Description Zclation.

I'he description rclation contains the textual
description of the action and data entities for all softwvare
representations supported by the dictionary. In reality,

there arec cight diffcvrent description relations contained in

the database. A description relation exists for both the

data and action entities for all four soltwarece
54

Lt ';..;E:_'_A. . LL'- ot A : .'.‘.E‘-\ R '.-.:' LRI .L o L-.- ~.“- - a_ o

s Ky

Cavin Ca ‘ara®

Al A e

representations, Figure 106 provides a graphical display of
the attribute ficlds contained in this relation and a 1list
of the eight relations which use this format and there
associated software represcntation. Also included in figure
16 is the entity typc of the item described by this relation
which would correspond to the classification of the value

contained in the name field of this relation

Description lelation

Project Name Line Description

Database Relation Software Representation Dntity Type

a_description SADT activity
d_description SADT , data iten
b_description Data Flow Diagram bubble
df_description Data l'low Diagranm data flow
pr_description Structure Chart process
p_description Structure Chart parancter
im_description Code nodule
v_description Code Variable

primary key valuc
Figure 16. Description Relation.

The primary key for this relation is a coubination of
the project name, name, and line attributes. The project
attribute identiflics the teanm or individual responcible for
this particular entry into the dictionary databasece, The
nasiec attribute didentifics the particular action or data
crtity being descrived, The tine attribute identifics the

particular line of text which an individual tuple in the

v..“._..‘.__.‘,.. -_'.\'-'g'-" UL U A RN L T T T

- . - . 0 - - . " - . .. - - AV - - " - " - M) P TR T P L L
PSR PN PR N PP PR VRDPE LWL W PR V- PR AT TP PP S . VS WAL W YR PR WP E PG VL Y Y W)

AD-A152 213 AN AUTOMATED/INTERACTIVE SOFTHARE ENGIN ,
ENERRTE DATA DICTIONRRIES(U) AIR F(lll(:EEE'!guG TOOL TO e
NRIGHT-PRTTERSON AFB OH SCHOOL OF ENGI.. C H HOI!HS
UNCLASSIFIED DEC 82 AFIT/GCS/ENG/84D-2

..

e T T e S O R

e

a2 22
L ELS

=
1.8

E

i

22 s pe

FFEEERR

crr
f
rr

MICROCOPY RESOLUTION TEST CHART

NATIONAL RIRFAIL OF QTANDARDS 1082 A

relation contains. The description attribute contains for

each tuple in the relation 60U characters of text which
describes the ecentity identified in the wname attribute. S

Figure 17 diplays what the relation when it contains somne o

actual valuces.

?4 Project Hame Line Description
|]
tean 1 qty 1 nunieric value which represents
b N .
s team 1 qty 2 the number of items required by
: team 1 qty 3 the customer to comnplecte a cale. -
o
1
f
.

Figure 17 Description Relation Lxample.

[——

llistory Relation.

The history rclation provides information concerning
the modification or change a dictionary entity undergoes ;““;
within a particular devecloprnent phasc. This relation
maintains information about when and by whom a dictionary
entity is modificd., Figure 18 presents a graphical display
of this relation and its attribute fields. It also lists
the ecight relations in the database where thias format is
used and the associated software represcentation, Also
included 1is the entity type ol the itenm described by this

relation. SR

el e e e T e e e T R T S N L)
.. et T et e Tt et e RN -
R LR A S S T SR e SRS .

I PLI SR L= T, . L C e ., IR
AR P, S, ML L, yli PSP W WAT DI SNe T DA WA S LI I ST W DR AT WA ST S WAL S I IO I AL AN

e T

HHistory Relation

Project Name Version Date Author

YT TWeeay it
S

Database Relation Goftware Representation Lntity Type

a_history SADT acitivity
d_history SADT data item
b_history Data I'low Diagram bubble
df_history Data Flow Diagram data flow
pr_history Structure Chart process
p_history Structure Chart parameter
m_history Code nodule
v_history Code variable

* primary key

Figure 18. liistory Relation.
The primary key in this relation is a cowmbination of
the project, name, and version attribute fields, The

project attribute identifics the group or individual

responsible for the dictionary cntry. The name attribute
identifies the dictionary entry being described. For
b example, in relation p_history the nawme attributce would be
the name of a particular parameter in the structure chart
software representation. The version attribute scquentially
identifies the wmodifications to a particular dictionary

entity. For exawmple, when an entity is initially cntered

into the data dictionary its version is identified as 1.0,

Yhen this entity is modified, the version attribute becone -

o)
~
L4

e e e e et T e e T e e e e e e T LU R A L et e -
N R Tt et T et et et et O SR T e R T I S R

. . PR B A A A P . . DG « P ° .
'.F'J‘._“_‘"A'J".“"-'-' DRI N W T Y YR R 2 g e e ta W S (G [N RE) (i S IR %)

1.1 in a new tuplc in this rclation. The date attribute

designates the month, day, and year when the entity was

3

- modified, The author attribute identifies the individual 5
. DR
& : . c . e
b responsible for changing some aspcct of the cntities meaning S
_l in the dictionary. Figure 19 provides a demonstration of

what this relation mipght look lilte when actually wused to

document entity modifications.

e

Project Hame Version Date Author
4
. teanl data | 1.0 6-9-384 Ted
o
3 teaml datan 1.1 8-24-84 Bill
- tecaml data 1.2 12-14-54 | iiike

Figure 19 ilistory Hclation Example. i
The dictionary databasc only maintains the current
information on a dictionary cntity. in other words, when e

any information content on an entity is modified the old
information content is not maintained for reference
purposes, The history relation, however, docs provide a
means for maintaining a record of all ecntity modification

which take place as well as the time when they occured and

the individual responsible tor the chanpe. By maintaining

this relation, it is possible to recover this information

from the author of the change or old printed cpoics of the

dictionary contents,

s
o

L T T T TR RS S et et e ra e P i S ST S e - PN
ISR LRI St et - R T R T S TR ST ST P S T S PG I S ST S L O P R T B
Lot et TR S S SR S S SN P S [SR P S .

e i e e ———— - - ———— e
g N : " v TR B G rS SCARTLAe e 0 o T T r———

llierarchy Relations.

The hierarchy relations contain information about the
logical decomposition of action and data entities into other

action and data entities. The concept of logical

decompostion of the action and data elements associated with

a softvare project is very important in the Top Down Design

‘
N
"t

1

“
-

(

«

i~ method of softwarc design.

The Top Down Design ilecthod initially considers a

software projecct to consist of only onc action entity and j

Y its associated data entities. This single action and its 5
fo .

, associated data cntities are then decomposed into a series -}

: of more detailed entities. These newly derived action and]

(5 data entities are then, themselves decomposed into still *;;j

more detailed components. This deconposition -process i ,j

continuecs until a level of detail is reached vhere further

decomposition is not possible.

This process allows the software designer to begin with o
a highly abstract <concept of the softvare project,

represented by the initial action entity and its associatced

s 1
data entities, and logically decomnposc the project into)
smaller more detailed components represented by the derived . X

I
action and data entitics. C
:

The concept of Top Down Design is supported by the
SADT, data flow diagram, and structurec charts methods of

software representation. Figure 20 demonstrates the Top

.

P L A ST e . oS . * o
- LS LU P P O I L N TR SR . T T et T e e e e e e e T

RS I I D "~ .
. S .- o e e S P
U S ERIE A S PG, Y O P A W W AT

. e .
e e e s T T T B
AP W N W RS WA S SR S R P I WY A L WA Y el

F- - - - T IR TS EM A i o s s R CI A A S M et e St At el Pt et S e e e B A AR A s et ae e e

Down Design !iethod as it might be portrayed in the data flow

diagram represcntation

/
/
7

c d 4
21
= :
1.)
I'irst Level of Deconmpostion
IFigure 20. Logical Decomposition Usinrg Data Flow Diagrams.
In order to support the logical decomposition process, L
. A) 4
the hierarchy relation, by means of its attributes, ties
each component entity to the entity from which it was
derived. Figure 21 presents a graphical display of the —
attribute ficlds contained in this relation. It also lists Tg'i
R

the relations in the database which use this format. The

corresponding soitware representation supported and the

entity type described by these relations are also listed.

90

P N R - T T T - L o - -".“. -~ o a . P . - o L o '--'_~ -
R T A St ML S N A R N N AR LI R E T

. ALY A PN W ORGPy -'.'.~'.~'-'1-'-'-;-'..-'.".' N e et e e e T T e e, e
PP AP ALIPLILIS JPS. DLPR WL A GO N SPSS G SE S Gl RADRE RE W L T Sl Nl S WO W Sy Sl Sl SO, R i, Sl S S iR . Tk, L TR R N

L

liierarchy Re

lation

Project

High_iiane

Low i.ame

Database Rel

a_hierarchy
d_hicrarchy
b_hierarchy
df_hierarchy
pr_hierarchy
p_hierarchy
v_hierarchy

ations

SADT
SALT
Pata Flow
Data TFlow
Structurce
Structure
Code

Software Represcntations

Diagram
Diagram
Chart
Chart

Entity Type

activity
data_iten
bubble
data flow
process
pararicter
variable

primary key

Figure 21, llierarchy Relation.

The primary key for this relation consists of a

combination of all attributes. The project attribute

identifies the individual or group responsible {or this

CSIR T YL
Pl A I

dictionary
name
entities.,

which are

entry.

The

children or were derived from the parent

The high_name attribute identifies the

of the entity which is the parcnt of the

lowv_name attribute identifies the

identified in the high_name attribute.

lover 1level
cntities

entity

The code software representation uses this relation in

a slightly

differcent

manncer

than the

other three

representations, ihe concept of logical decomposition doces
not come into play in the v_hicrarchy relation which
supports the code represcntation, In this case, the

relation supports the idea of a variable being derived

91

. ‘._‘._ L T SR T .- " '.“-'A'.-:u PR
VRPN VS S I SOl S I RS S W W LI RN VY

fronm

)
PPN VT

2
P

4
]
Co
4

A

cd

i

o

-9

4

]

- 4
N

h

"

P

.oty
PR A N NI T Y S

b

e}

. '/ -)

2T
ivv-:-

A he

NTY T e

\o

S —— S I L. . T

a data structurec supported by a particular proasramminge
language. A pood exanple of this situation is the record
structure in the Pascal prograuming language. A rcecord is a
data structurc vhich can consist of many different fields.
A variable derived from a Pascal record would be considercd
the child of that record in the hierarchy relation.

Figure 22 presents an exauple of how the hicrarchy relation
would maintain information about the logical decompostion process
in the structurec chart representation. The example displayed in

figure 20 is docuumcnted in this figure.

df _hierarchy (data cntities) b_hierarchy (action entities)
Project High_llame Low_lame Project iligh_ilame |Low_llame
team 1 a c team 1 A B

team 1 a £ tean 1 A C

team 1 b i " tean 1 A D

team 1 b d

team 1 b h

Figure 22, Ilierarchy Relation Uxauple.

leference Relation,

The reference relation contanins inforwation which
allows the development of an action or data entity to be
traced through the softwarce design process. PDilferent
software represcentations will be used to develope software

in the wvarious stagpces of the software life cycle. The

2
[

" P T R S et S "
LI S S AL PR DI YA T Wi TR WV St WA SOUN SR S N} Y -

PO W

reference relation contains information which identifics the
particular software recpresentation used in the previous
developuent stage and the reference or references which
identify the entity in the previous development stage.
I'igure 23 provides a graphical display of the attributes
which make wup this relation, I'ipure _23 also 1lists the
reclations wusing this format, the software representation

supported and the cntity type described in cach of these

relations,

leference Relation

"

Project lfame leference Ref_Type

[T S\UE S A R A S S S S S AL S S VAP P S S S WAL TP P WL AP LAY

Databasce Kelations Software epresentations Latity Type

a_rcicrence SADT activity
d_reference SAbT data item
b_refercnce pata 'low Diacran bubble
df_reference Data I'low Diagranm data flow
pr_reference Structurce Chart process
p_rcfercnce Structurc Chart parameter
m_reference Code nodule
v_reference Code variable

* primary key

Figure 23, keference lelation,

The primary ey for this relation consists of a
conbination of all attributes contained in the rcelation.
The project attribute, as in the previous rcelations

discussed, identifics the project or individual responsible

PO . A L e - R I .. e . R R T
. et ~

- C e T cae T T e T T T e e T R AN
L PP N P PR P N et et et tan

S AT
P PP P P

LSRR
PO W

. C e
Celelal

1
¥
!
1
R

-
.

for the dictionary entry. “The name attribute identifies the
entity being described. The reference attribute designates
the identity of the entity in the previous development
stage.

The softwvare represcntations supported by the
dictionary designate an action entity by both a nane
convention and a numeric designation. For this reason, the
reference for an action entity can be either 2 name or a
number. doth action and data entities can contain a
reference to a written requirenents document by including
under the reference attribute the number of the section of
the document which applies to the entity Being described.

The ref_type attribute identifies the particular
representation and the method used (number or nane) to
designate a refcrence to a prcvious development - stage.
Fipure 24 diplays the allowable ref_type attribute values
for cach of the four representations supported by the

dictionary.

94

- q.‘.'. - . - LR . LY v e ‘
PR I PO T I I P N PO Y

ia

—

. ."- et -
PRSPV AT SR . . P

]

i
J ORI

bkt

-
.
«

.
‘

;.i

| AU A RN S S Sn e St e S - o e d d sy e e e ———
@
|
ri SADT - ‘\Ctiv:ity) 1
Requirements Number DI'D Dubble ilumber 1
- Dr'b Bubble Namc “]
s SADT Data Iten A
~ Requirements lumber DF Data Flow lanec S
- _ Data Flow Diagram - BLubble T
. Reguirements tumber SADT Activity lumber
SADT Activity Hame
Data Flow Diagram - Data Flow
Requirements Humber SADT Data Item :
Structure Chart - Paramcter l
i} Requirements tumber SADT Data Iten]
f; DFD Data [Flovu
Structurce Chart - Process ;
Requircements Humber SADT Activity Huwmber 1
SADT Activity liaue D Bubble Humber]
. DI'D Bubble Name 1
: Code - Variable 1
L SC Parameter lianme SADT Data Ttem
. DI'D Data Flow fequireuments lumber
- Code ~ilodule)
, SC Process ilumber SC Process l'ane
) SADT Activity lumber SADT Activity ilane
—_ , DFD Bubble liumber DD Bubble Hane e
g (o 4
" Figure 24, Ref_Type Attribute Values 7|
;']
Ei 4
P
®
: 4
_ 1
* 1
r. . 1
. 1
1
’]
. 1
1
- 95 «
y 1
. 1
- e s : e e S T e IS ool

Trre

)

Alias Relation.

The alias relationm documents the situation in a
software ~epresentation where an action or data element is
identified by more than one name. The format for the alias

relation exists in two forms, one for data entities and one
for action entities. Tigure 25 provides a graphical display
of the attributes which make up the two forms of the alias
relation, Also shown in figure 25 are the actual database
relations which use the displayed formats, the name of the
software representation which is supported by the relation,

and the entity type described by the relation.

Alias Relation For Data Entities

Project Name_1 Name_2 Comment Where_Used
#* 3
Database Relations Software Representations Entity Type
d_atias SADT data item
df_alias Data Flow Diagram data flow
p_alias Structure Chart parameter
v_alias Code variable

Alias Relation For Action Entities

Project Name_1 Name_2 Comment
5 3 S
Database Relations Software Representations [Entity Type
a_alias SADT activily
b_alias Data Flow Diagram bubble
pr_alias Structure Chart proccss
m_alias Code module

¥ primary key

Figure 25, ALias Relations.)

96

o Wy WP R NPT I Wl Wt T Ty AT Wi S TP AT T Tk T L P O PUL,

Aa e Atk

WIS Sk S Y |

T
-

- T'.,

LES A g

~ - . . - . -~ Tt . .t -
COAI I R N [T . . .
S R 2 P RN LY LAY S L SAPLJP B S, ShRE RO S F A S VAN, BV S S

Both forms of the alias relation usc a combination of
the project, name_1l, and name_2 attributes as their primary
key. These three attributes taken together can wuniquely
identify any tuple in the alias relation. The project
attribute designates the team or individual responsible for
this dictionary entry. The name_1 attributc contains the
alias name or the "other name" by which a data or action
entity can be identified. The name_2 attribute specifies
the original or primary name which identifies an action or
data entity.

The selection of these three attributes as the primary
key provides a wunique identifier for each tuple in the
relation. The project attribute ensures that the
information in the tuple not will be confused with another
software project. The name_1l and name_2 attributes form a
unique identifier within the software project. While it is
conceivable that a entity could be identified by more than
one alias name, an alias name can not be allowed to be
associated with more than one original entity name.

Both the data and action forms of the alias relation,
contain a comment attribute. The comment attribute provides
a place for the tool user to include a comment concerning
the alias name for a dictionary entity. This comment should
attempt to explain why an alias name was used to identify
the entity. This is a valid question, The entity

obviously existed and was identified by an original name.

97

PV B R A T T TR T S S A N NI e Wi

———

O

| ®

Why was the primary name not used to identify the data
entity ? The use of alias names should be closely monitored
and wherever possible should be eliminated. llaving two
names for one entity leads to communications problems and
confusion 1in the operations of the data dictionary and the
development of software in general.

The only difference between the two forms of the alias
relétion is the existence of an attribute field 1labeled
where wused in the data entity version of this relation,
This attribute identifies the action entity or entities in a
project which use the alias name to identify a data entity
with which they interact. For example, assume that an SADT

activity named "getdata" takes as an input a data item named

"new data". Also assume that the data item "new data" is
not the primary name for the data entity but an alias name
for the data item "sales data'". The alias relation depicted

in figure 26 provides a graphical picture of how the alias

relation would document this situation.

Project Name_1 Name_2 Comment ' Wherve_used

Team 1 New Data Sales Data| Design Error Get data

Figure 26, Alias Relation Example.

Value Set Relation.
The value set relation is used to identify the values a

particular data entity can assume. This relation is only

98

o e e e e e e e e A e . e . R T L L P P PR L T S .
LI SRS NS St It PRI I R B T BT T NI I A I S TP T SR AT N S R I I A S 1

"
P

A et

R
L .
Ak 4 kol e o Ah'ela m s 8 4 4 hianlaoe o alsem

S, et
PSP L P

- - <,v. vv = v -

,
»

»
vl
b
[
Voo
”o.
i-.“‘
b
b
)

)

I
)
r
'
S

e
‘
*

LA 7 mashat i os el .T_v_ |
SIS T T e
A . . FAN

(®

useful in providing meaningful information about a data
entity when the set of values that a particular data entity
can assume is both finite and reasonably small. If the set
of values for a data item were infinite, the relation
containing these values would have no size limit. In much
the same manner, if the number of values associated with a
data item was extremely large, the cost of storing this
information in the database would exceed the benefit of
having access to the information, IHowever, if the number of
values is small, maintaining them in the dictionary 1is
beneficial. As a general rule of thumb, a data entity which
can assume only ten or less values should have these values
included in the dictionary database.

Because this relation 1is only <concerned with data

entities, it only supports the data entity portions of the

software representations supported by the dictionary.
Figure 27 displays a graphical representation of the
attributes which make up the value set relation. Also

included in figure 27 are the names of the database
relations which use this format, the software representation

supported, and the entity type described.

The project attribute identifies the person or group
responsible for this entry into the dictionary. The name
attribute identifies the data entity being described in the

relation, The value attribute contains the value which the

99

e e .

. - > N .
g e Tt T T Tt e e Ty et e et e T T e e e e T T e e e . N
EAEAPL NN VL L AL 1P, UL PSP PN APRR 2 AE WS WAL YT A SR SR WL WA, WS W 1N S Al WP VB S LI 3 COR]

r

Y

:

g
b
&
h‘. .

data entity identified in the name attribute can assume.

Value_Set_Relation

| Project Name Value
*®

3¢ 3

Database Relations Software Representations Entity Type

d_value_set SADT data item
df_value_set Data Flow Diagram data flow
p_value_set Structure Chart parameter
v_value_set Code variable

*primary key

Figure 27. Value Set Relation,

The primary key for this relation <consists of a

combination of all the attributes which make wup the
relation. This is necessary to ensure that all tuples in
the relation <can be uniquely identified. Since. it is

not only possible but highly likely that a data entity will
have more than one value associated with it, the inciusion
of the value attribute in the primary key is necessary to
ensure the unique identification property.

As stated earlier, this relation is only useful when a
finite and reasonably small set of values exist which the
data entity being described can assume. For example, if a
data entity named city could only assume the names of four
cities in a particular software application, the use of the
value set relation would be appropriate., On the other hand,

if the data entity could assume the name of any city or town

100

. e L
PP PR PR P S R

'
'

’

b

’

»

»

in the United States, the set of values would be so large as

to render the use of the value set relation worthless.
Figure 28 gives a visual example of how the value set

relation would support the first case of the data entity

city described in the previous example.

Project Name Value

Team 1 city Boston
Team 1 city New York
Team 1 city Atlanta
Team 1 city Washington

Figure 28. Value Set Relation Example

Algorithm Relation.

The algorithm relation «contains information which
explains how an action entity performs its function. An
algorithm is a step by step procedure for solving problem or
performing a task or operation in a finite amount of time.
This relation allows the tool user to specify the step Dby
step procedure by which the action entity being described
operates. Because this relation is only concerned with
action entities, it is only applicable to the action portion
of the software representations. In fact, the algorithm
relations is only applicable to the structure chart and code

software representations. The SADT and data flow diagram

101

n e et et e e T T et e T Y e T T e e s e s e R L A

- A I L P I I A T T S L) S e T T e e T T T e T T T T e
Salmfatalaraatalalal a ales et adn el et el ol ol i e it a e S A i S nta Na el

- - - - e e - MRRA A S N are e diade i bl dedh e i i R A T e B I R i T T T T

methods of software representation are most useful during
the requirements definition ©phase of the software 1life
cylce. During this initial phase of development, the

software designer has not determined what algorithms will be

Pl o - T ——— 5 Ty v
| P -' ‘

used to perform the desired actions, For this reason, the
algorithm relation 1is not included among the database
relations which support these software representations,
Figure 29 provides a visual display of the attributes
which make wup the algorithm relation. Also included in
figure 29 are a list of the database relations which wuse
this format, the software represcntatiop supported, and the — e

entity type described.

Algorithm Relation 1

Project Name Line Algorithm

Database Relations Software Representations [Entity Type ~:f;
p_alg Structure Chart Process
m_alg Code tHodule

* primary key

Figure 29, Algorithm Relation,

The project attribute identifies the person or group
responsible for the dictionary entry. The name attribute
identifies the action entity described in a particular tuple
of the relation. The line attribute identifics the
particular text line of the total action algorithm which is

contained in a particular tuple. The algorithm attribute

102 e

MR SRR e = -~ CAEA St M M SEELANEcan) T —— CEBENL Mot e e e Segun ek & adiusu v SOEELEGEL e e ma T A g

e d

PR R IR

contains 60 characters of a text which provides a portion of

the overall algorithm for the action entity. Y ‘i
The primary key for this relation consists of a ;E
combination of the project, name, and line attributes. FE;E
These three attributes taken together are able to uniquely . |
identify every tuple in the relation.
? Figure 30 provides an example of an example of what the
F; algorithm relation would look like when supporting an actual :) ;
dictionary entry. :
} a
ul Project Name Line Algorithm N _%
:V Team A | Sort 1 If A>B Then ~:;E
E‘ Team A | Sort 2 Put A in File I j
q0 Team A Sort 3 If A<B Then ;émj
,i Team A | Sort | 4 Put A in File 2
3 Team A Sort 5 If A=B Then
[_I Team A | Sort 6 Put A in File 3 C
[)
Figure 30. Algorithm Relation Example L
P In format and operation, the algorithm relation 1is j
identical to the description relation discussed earlier. ii
4 The only difference Dbetween these two relations is the ?2
;’ nature of the information they maintain. bj
; This concludes the discussion of the dictionary :‘;g
: relations which are common among the four software ii
representations. The remainder of the relations will be ~ 1
‘ 103

oo e e Nat e e te e e Tt e B TR I TP o DI U R)
R N S LR U N P P T L P e e N e L G T TR S S . .
T Tt R T s e Tl e e e e e e
PRI NP DN IR 2P . PG PV N it LY SL SoAP SLAT WAl Vot Wl Sl Wil VO . S PUULP U Wy Wit Y, bbbt o hinl ol oo bl ate et atatala®eBolkoP oBada o®a®>a%a®a'a'ai

.
[

I

) e

[

-~— D e T T ey ———

bndnsiestusicad

discussed within the context of a particular software v;
representation. This does not mean that the remaining) .
relations do not contain elements which are common among the ;?
various represcntations. Hovever, the discussion of these t
q
relations is more effective when the strengths and)
constraints of the individual software representations are]
taken into consideration. _
SADT Relations.)
There are three dictionary relations which support the
SADT software representation which have not already been
& <
discussed. These three relations are the activity,
activity_io, and data_item relations. These relations will
be discussed individually in the following sections., R
Activity Relation. “Vm;
The activity relation can be considered as the main fg
relation in the dictionary for identifying the action .1
entities or activities depicted in a SADT software :
representation. Figure 31 provides a graphical display of i
the attributes which make up this relation. :‘z;
3
Activity Relation]
Project | Name . Number
3% 3% . }
RS
* primary key ‘_fﬁ
Figure 31. Activity Relation, .;ij
The project attribute identifies the team or individual]
104 R
-
4
1
<
o e o D e e e e

responsible for this entry into the data dictionary. The
name attribute identifies a particular acitivity within a
software project. Thé number attribute <contains the
activity number associated with a particular activity on a
SADT diagram.

The project and name attributes form a unique
identifier for each tuple in the activity relation. For
this reason, a combination of these two attributes form the
G primary key for the activity relation. Figure 32 gives an ’

example of an SADT diagram and how the activity relation

would identify the various activities contained in the

diagram,

Find Data .
d 6o 1.2.4.1) y
Process .
: Ny Data K
3 T TN 1.2.4.2 By
i . Sort Data 0
-3 1.2.4.3
B Activity Relation
g Project Name Number
»)
Team 1 Find Data 1.2.4.1 f
Team 1 Process Data 1.2.4.2 -
Sy
Team 1 Sort Data 1.2.4.3]
» ' .
"
Figure 32. Activity Relation Example. t‘:ﬁ
RS
’]

105

PP A L S R S STt o . i . P R T I AL P P T e S e e

- . - - - " --‘.'-'.’.' e tat
TP NP R AN NENY DL APSIE AP XOUF P U S, i

Rt RS TR Rl S Tt At At Tt St Mttt et i o B S S 1

J

’ activity identified by the Aname attribute. The 3
EE element_type attribute classifies the manner in which the

; data entity identificd in the Dname attributec interacts with

? ' the activity identified in the Aname attribute. Vj
::. The classification of the interaction between an E;E
Y.l _' ;J
;' activity and a data entity in a SADT diagram or j
: 106 =
o . %
]

g .
L e e S P S B g e e AT e e et T]

Activity_ IO Relation.

The activity_io relation identifies the elements of an
SADT software represent&tion which interact with an action
entity or activity. The elements are normally SADT data
entities or data itenms. These data entities represent the
inputs, outputs, controls, and mechanisms which are used and
produced by an SADT activity.

Figure 33. provides a graphical display of the

attributes which make up the activity_io relation.

Activity_IO Relation

Project Aname Dname Element_Type

% % ®
¥ primary key

Figure 33. Acitivity_IO0 Relation..

The project attribute identifies the person or group of
persons who are responsible for the dictionary entry. The
Aname attribute contains the name which identifies the SADT
activity being described. The Dname attribuite contains the

name of an SADT data entity which interacts with the

-—e——

representation is determined by the position of the data
A entity with respect to the activity on a SADT diagram. The - 4
‘ graphical display provided in figure 34 should help to ' ‘j
. clarify this concept. . ;?
i C (Control) i ii
So}t ‘ _
) ———m-* (Activity) ?]
A B]
(Input) T (Output)]
) D (Mechanisms) 3
' Figure 34, SADT Activity and Data Item Interactions.
As figure 34 demonstrates, there are four 1
) classifications for activity and data entity interaction in] '
the SADT software representations: inputs, outputs,]
controls, and mechanisms, The element_type attribute will i
i ‘° contain one of these classification for a particular tuple -‘.R
in the activity_io relations. ,i
)
Figure 35 demonstrates how the acitvity_io relation ‘J
] would document the activity and data wentity interactions) ‘j
depicted in the example in figure 34, 3
) Activity_JO Relation
Project Anamce Dname | Element_Type ;
Team 1 Sort A Input 5
) Team 1 Sort B Output 'j
Team 1 Sort C Control _i
Team 1 Sort n Mechanism f?
' Figure 35. Activity_lO Relation Exanple. 4
107 1
)
e e e e e]

| ¥

@

The primary key for this relation is a combination of
the project, aname, and dname attributes. The combination
of these values form a unique identifier for each tuple in
the activity_io relation,

Data_Item Relation.

The Data_Item relation contains information about the
data entities used in an SADT represcentation of a software
project. FEach tuple in this relation contains information
which describes a particular data entity. Figure 36
provides a graphical display of the attributes which make up

the data_item relation.

Data_Item Relation

Project Name Data_Type Low High Data_Span

* *
* primary key

Figure 36, Data_JItem Relation,

The project attribute identifies the individual or
group of individuals responsible for this entry 1into the
dictionary. The name attribute identifies the particular
SADT data entity which a tuple in the relation describes.

The data_type attribute attempts to classify the data
entity in terms of the type storage structure required to
represent the data entity in a programming language. This
attribute may not cven contain a value. Since the SADT

representation 1is rimarily used durine the requirements
o

108

P T R e R AU U S P e
K . e RS ARN R

L, e T e, Y
R T TOA SR SLR WA, WA SO Yol

Chalil Sain eas o v S Shs 96 200 2n — S — —T——

s

PSPy

AP IPL LRE EL I S IR S e el e e e T
PP Sl WAL Al WAL P VML ST Wolt el A LA S Ala A et Al e atatala Vs, vasted

Ty

PG T

"

A

L 4

- AL PN P N]
. - T
-’ l‘_ aAemts At -._ -_ -

»)

phase of software development, it may bhe impossible to]
specify a data type for a Jdata entity at that stage of !

1
development. However, 1if that information is available it é

enhances the description of the data entity. The dictionary
supports the documentation of four standard data types:
integer, real, character, and boolean. lHowever, if these
four types are not sufficient to describe the data type of]
the data item, the tool users may enter their own data type
for a data entity. The data_type attribute will contain
either one of the four standard data types or a user defined

data type.

The low attribute contains the minimum value a
particular data entity can assume. Like the data type
attribute, the low attribute may not contain any value. For i .j
some data entities a minimum value will not exist, For _ ?
example, a data item which represented the cities of the)

United States would not possess a minimum value which could
be maintained in a low attribute field,

The high attribute contains the maximum value a data
entity «can assume,. Like the low attribute a particular
tuple in the data_item relation may not contain a value for
the high attribute.

The data_span attribute contains a 060 character

description of the range of values a particular data entity

can assume, This attribute is extrenely useful in
describing the <characteristics of a data entity. For .
109 .

A SR D R R A T IS PR UL P . . N L et
PR R IPRE TG PP RPN, 0 g 2 O, PRI L PULIPLE S.F P WYL F W SN TN A et A a4 a e s aa e ata S it e

example, if a data item represented the cities of the United 1

States, it is obvious that neither a low or high attribute

value could be specified, However, the data_span attribute -
could easily represent this situation by including the ff i
statement "all cities in the US" in its attribute field for
the tuple which described this particular data entity. Like
the low and high attributes, a tuple in the relation may not J
contain a value for the data_span attribute.
; This concludes our discussion of the relations which ‘
support SADT method of software representation. The :
4
k following sections will discuss the relations which support
- the data flow diagram method of software representation, ' E
ﬁi Data Flow Diagram Relations. L
|® 1
There are three rclations which support the data flow ‘
b diagram representation which have not been previously '}:
k‘ discussed. These relations are the bubble, data_flow, and i
1
bubble_io relations. From the discussion of these j
relations, it will become obvious that these relation are 1
{. almost identical in format to the three relations dicussed -
; in the previous section which supported the SADT
E representation. llovever, although similiar these reclations
% support a respresentation which uses entirely different
X graphical symbols to represent the elements of a software T
& project. These relations will be discussed in the following :11
r ‘ -
Hr. sections, j
| 110
3 ‘.
: 1
:. L T T L e e e e e e T e _

Bubble Relation.

The bubble relation is the primary relation for
identifying the action entities depicted in the data flow
diagram representation. Figure 37 provides a graphical

display of the attributes which make up the bubble relation.

Bubble Relation

Project Name Number

% *
primary key

Figure 37. Bubble Relation.

The project attribute identifies the person or group
responsible for this entry into the dictionary. The name
attribute identifies the particular data flow diagram action
entity being described. The number attribute contains the
number associated with the action entity on a data flow
diagram,

The combination of the project and name attributes
serves to uniquely identify every tuple contained in the
bubble relation. For this recason, the combination of these
tvo attributes serve as the primary key for this relation
Figure 38 displays a data flow diagram and how the bubble
relation would document the actions entities depicted.

The bubble relation is identical in format tec the

activity relation discussed carlier. Both relations serve
to identify the action entities associated with their
111

L
@
:
]
respective softwvare representations,
-
~]
{ | | 4
. -]
8 A Get Data E
o ' 2.5.6.1 o
. -9
. -‘1
B |
Sort Data
\2.5.6.3
. D 1
[
[Bubble Relation
|
Project Name Number
! Team 1 Get Data 2.5.6.1 1
| ® ’
Team 1 Process Data | 2.5.6.2]
Team 1 Sort Data 2.5.6.3
- 4
K4 _ {
Figure 38. Bubble Relation Example, .
Bubble_IO Relation.
The bubble_io relation contains information about the
interaction between data entities and action entities in a
data flow diagram recpresentation. Figure 39 displays the _)
attributes which make up the bubble_io relation, 4
Bubble T0 Relation]
N
Project Bname | Dbname Dircction
% primary key O
Figure 39. Bubble_I0 Relation, 1
4
B
|
‘ A
i
‘,;:{" So... 2 e “'; b L. _’-\ b, SR D -A_'IL-.‘_:A.‘ “‘.-L"A .- - P | hd o k4 - - - : ;i

(Y

e @

—— v‘«-.
L S L

-

- . . et B
e . Tt T T ey T T T T e T T e LI S URUL AT LN LS
PP PR S SV SR L PO G S L W S R S S DUERE S A VTR S S % IS

The project attribute identifices the person or group
responsible for this entry in the data dictionary. The
bname attribute identifes the structure chart action entity
described by a particular tuple in the relation. The dname
attribute identifies a structure chart data entity which is
either an input or an output to the action wentity being
described, The direction attribute indicates whether the
data entity identified in the dname attribute is an input or
an output to the action entity described by a relation
tuple.

A combination of the values contained in the project,
bname, and dname attributes uniquely identif{y each tuple in
the bubble_io relation. Both the action entity name and the
data entity nanme are required for unique' tuple
identification, because an action entity may have several
data entities it interacts with and a data entity may be
used by more than one action entity. Decause of this unique
identification property, the project, bname, and dname
attributes serve as the primary key for the bubble_io
relation.

Figure 40 presents an example of a data flow diagram
and how the bubble_io relation would document the
interaction betwecen the action and data entities depicts in
the example data flow diagram.

The format of the bubble_io relation is almost

.

113

S A -'\.'_‘-' LY et

«" a4 - RS
ot ol .

e B S an - g

. Y
AT LI AR . Y

P

~e

et n

K J

e, ST ot et e e R I I R T RO TR . -)
PRI Sl iy A A W [N TSP GAPCAPELIPN, WELIFG.IP WAL W RS A AT W Dul SR Wy P

Car - = = Ay e e~y

identical to the format of the activity io relation
discussed earlicr. Both relations maintain information
about the interaction between data and action entities in
their respective software representations, The only
difference between the two is that the values 1in the
direction attribute of the bubble_io relation only indicate
it a data cntity is an input or output of the action entity.

The corresponding attribute,

element_type, in the
activity_io relation allows a data entity to be c¢lassified

as a control, mechanism,input or output.

A —— //_D
I

Bubble_I10 Relation
Project bname dname]direction
Team | Get Data A Input
Team 1 Get Data B Output
Team 1 Get Data I Output
Team 1 Process Data I ITnput
Team 1 Process Data C Out put
Tean 1 Process DPata I Output
Team 1 Sort Data I’ Input
Team 1 Sort Data) Uutput

. e et Tet et at e,
. R RSN . . A Vet e e
a

P
-

. OV R I
PR RSP PR

* AT A .t atatan.

Figure 40. DBubble_IO0 Relation Example

Data_Flow Relation.

The data_flow relation describes the data entities

wvhich exist in the data flow diagram software
representation. The information contained in a tuple of
this relation describes a particular data entity. The

attributes which make up this relation are shown in figure

41.

Data_Flow Relation

Project Name Data_Type Low High Data_Span

¥ *

* primary key

Figure 41, Data Flow Relation.

The project attribute identifies the person or group
responsible for this entry in the data dictionary. The name
attribute identifies the data flow diagram data cntity
described by a tuple in the relation, The data_type

attribute indicates the storage structure the data entity

would require in a progranming language, The value of this
attribute may be one or four standard data types directly
supported by the dictionary; inteper, real , character,and
boolean; or a uscer input value ior the data_type

attribute, The low and high attributes contain the rmininum

and maximum values, respectively, victen the data entity can

‘atata’a’.'a'a’"a’a Al d A PP A S W W G Y P

pp——
DR

Ty ‘vv.v, "

assume. The data_span attribute consists of a sixty
character description of the range of values the data entity
can assume, The dat5_type, lowv, high, and data_span
attributes may not contain a value for some data entities
documented in this relation.

A combination of the attribute values for the project
and name attributes serves to uniquely identify each tuple
in the data_f{low relation.

The format of the data_flow relation and the format of
the data_item reclation discussed in the section on SADT
relations are identical, Both relations describe the data
entities of their associated software repfesentations.

This completes the discussion of all relations which
support the data flow diagram method of software
representation. The next section begins discussion-on the
remaining relations associated with the structure chart
method of software representation.

Structure Chart Relations.

There are five relations which support the structure

chart representation that have not been previously
discusscd. These relations are the process, process_io,
pr_call, pr_passed, and parameter rceclations. These

relations will be discussed in the following sections,

Process Relation.

The process reclation identifies the action entities

depicted in the structurc chart software representation.

116

A N el At el ettt ele s e IR R
ca . T T I . . BRI W LT e e e T e s
e

S T L ST T T s T T S e T T Nt T T A e e
., S b S) PG T A L I A AT A P A A L A S LY A S G G S U TP LI

STt e tet
WP U W]

Figure 42 displays the attributes which make up the process
relation,

The project attribute identifies the person or group of
persons responsible for this entry in the data dictionary,

The name attribute identifies the particular action entity

or process being described. The number attribute contains
the number associated with an action entity when it 1is

.
yﬂ depicted on a structure chart diagram,

Process Relation

Project Hame Kumber

o .
P
[primary key

Figure 42. Process Relation. o
E (®
;_ A combination of the values contained in the project
' and name attributes scrve to uniquely identify each tuple in
Fi the relation. For this reason, a combination of these two

attributes serve as the primary key for the process
relation,
Figure 43 displays an cxanple of a structure chart

diagram and how the process relation identifies the action

e

entities depicted by the structure chart example,

./ ~aadma
.'.

et LR S -t BN R
e e et e T e e e e IR A

LTa “aratale’

S sLem w o mUw Te TR TR T TV Y e TR T g T '3 T T W - — —r = Y v w e v w o o ow-—

— - vﬁlvAviv-.v,_
-

Data ' Dafa '
1.2.3.2 1.2.3.3

Process Relation

Project Name Number
Teaml Process Data 1.2.3.1 .
)
Team 1 |Get Data 1.2.3.2
Team 1 |Sort Data 1.2.3.3
40 Figure 43. Process Relation Example.

Process_I0 Relation.

The process_io relation describes the intcraction of a
structure chart action entity and a structure chart data
entity. Action entities are often called processes and data
entities are often called parameters in structure chart
terminology. The process_io relation identifies the
parameters which previde input to or constitute the output
from an action entity or process. A parameter in the
process_io relation can be a file or hardware item as vwell
as a parameter., The iwmportant characteristic is that the ;;‘;

data entity described by this relation represents the action

r
)
s

[
N

118

Lo s
.

i Wv_‘
r, s ov ... ;)

At e, et . .'—_-\-..".‘__‘ D N LU R o e e e el e

DA LS. v VR PR PP P R P VR VI WAL, YRR i

DI APICEPROIPR. D PP PE PSRN VLW PRDIE VAL . Y. PR P PP ¥

e CBnd I -~ - T AACAR e e e e ey v e a A ot B s ‘1

entities interface or interaction with the rest of the
software project under development. Figure 44 presents a

graphical display of fhe attributes which make wup the

o daded

?~ process_io relation,

The project attribute identifies the person or group of
persons who are responsible for this entry into the data
dictionary. The name attribute identifies the action
entity or structure chart process being described by a tuple

Process_IO Relation

Project | Name | Pname | Direction | P_Type | Class | Order

' Y s n s
4t 3% 3%

vlﬁ
PR %)

! * primary key

Figure 44, Process_I0 Relation.

in the relation. The pname attribute identifies a parameter

or other item which interacts with the action entity

identified 1in the name attribute. The value contained in
the pname attribute may identify a file or a hardware item
as well as a structure chart paramecter.

The remaining four attributes of the process_io
relation (direction, p_type, class, order) describe the
nature of the intcraction between the action entity and the o
data entity and the nature or classification ol the data
entity. The valuces contained in these attributes arce highly

dependent upon the nature of the associated data entity.

AU MAAOM A TR T T -
L
e ek

The class attribute identifies the nature of the data

entity interacting wvith the action entity. The values which - A

119

.., '.-. ' ..' .-“T'...T'.

o

B ol e it
LR t‘ v

~

A P B e e e W T e e e e e T R - K Rt TR R S T S
';{‘.'_1."\.‘ b S S Ty A T S L, P L. P Ay . U, W PO M. M S . I U O I P PP S a P S PR . Wl S s SOl Vit Wl S

Ala e s ‘g

can appear in the class attribute are: 1local, global, file,
‘ and hw (hardware). The lacal and global values indicate that
the subject data entity is a structure chart parameter. If
the value is global, it indicates that the parameter can be
I accessed by any process or action entity in the program or
project wunder development. If the value is 1local, it
indicates that the parameter can only be accessed by the
ol portion of the program where it is known or identified. If
the action entity is interacting with a file or hardwarec
item, then the <class attribute value will be file or hw
) respectively,

The direction attribute classifies the nature of the

s

interaction between the action and data entity. This
i @ classification indicates how the action entity uses the
subject data entity. There is a definite correlation T

P
‘e

between the values contained in the class attribute and the

i values contained in the direction attribute. Figure 45

PR

displays the four different values contained in the <class
attribute and the <corresponding allowable values for the

direction attribute,

'.:j 120

. . - . . - - -t A .
e . et CHRC . .
h bondenbata i a’ sl as s a2 & o sl A

)

-\

Class Attribute

Direction Attribute

local input
output
global used
channed
file read
write
hw read
write

the value attached

communicate

written to.

attribute

could

parametcer

Figure 45. Class

As figure 45 shows,

arca of intecrest

entity actually changes

with

associated
value.

casily rcad

calculations using these values,

to the file.

The p_type

which

and Dircection

the value.
It is not unusual for a
direction

For example,

attribute

interacts

a local

to the global parameter or

the action entity by bei

data

values for a

valucs

trom a

with action

121

Attributce

parameter

I'iles and

then write the

describes the

entity.,

Values.

is considered to

act as an input or output to the action entity.

ng read

entity

particular

file,

LT W

if the

to

a structure chart

nature

Y

Since

from

the
value of a global parameter is known throughout the program,

is whether the action entity only uses

action

hardware items
or

possess

class

of

LI A Y

process
perforn

results back

a

It basically

~ B S s

s gt e 2T e S e Tl L.

Y Y

ettt ek

R

MRS APRAT W

PP ST WL

identifies if the parameter, either local or global,
represents flag or data.information for the action entity,.
Data information would be such things as the name of a city,
a number required for a computation, or a month of the year.
Flag information would be such things as the answer to a
specific yes or no question such as the value true or false
for a parameter which indicate if a <certain number 1is
negative or positive.

The order attribute identifics the order in which a
local paramcter is received by the action entity. For
example, 1if a structure chart process interacted with three
local paramecters, one of the parameter would have a order of
one, another would be the second in order, and the final
local parameter would have an order value of three.

A combination of the values contained in the broject,

name, and pname attributes serve to uniquely identify each

tuple in the process_io relation. The project attribute
differentiates between the various software projects
supported by the data dictionary. The combination of the

action entity namc, contained in the name attribute, and the
data entity name contained in the pname attribute provides a
unique identifer for all action and data interactions which
take place within an individual software project. Because
an action entity can interact with more than onc data entity
and a data entity can be used by more than one action

entity, it requires the name values of both components to

122

e Wt vt .
BRI N I N i SR T T T St MNP N P S R Sttt e =
WP AY SlP NP SIS W I L S P AP LA A L L I WAL WP P YRR WA PR LRE RN WA WU D P 8 Can

I Ant Bon Jeei g See Sy 2

Py

ALl als & g4 o o

]

K

TR SRR P T S

provide the unique identification property. For the above
reasons, the project, name, pname attributes serve as the
primary key for the process_io relation,

In using the process_io relation to support the
structure chart method of softwarc representation, it 1is
necessary to establish a standard convention or framework
for referencing the information portrayed on a structure
chart diagram. The data entities which enter at the top of
the structure chart process are those entities which
interact with the action entity and are documented in the
process_io relation. Figure 46 provides an example of a
structurc chart diagram and how the process_io would

document the data and action entity interaction.

Process
Get Total

No_l?

Ho_2? 8 Total

Process
Add

Process_I0 Relation

Project | llame | Pname | Direction |P_Type| Class | Order
Team 1 Add No_ 1 Input Data l.ocal 1
Team 1 Add lio_2 Input Data Local 2
Team 1 Add Tolal | Output Data L.ocal 3

Figure 406, Process_10 Example 1.

123

e om .ttt e P P <L e e e s - e s .
PPN WAL AU R IP I Y TR S PRI, LML, LU, . P LI T T VR WO SR W S

T e———y

s aalacaia 4

. .

s

o . .
IR R R P

'

, .
[P Y)

y
14
o

entity

action.

Since

enter or

It does

Total 1is
k discussed
{ The

exanple,

40 structure
entities
appear on

situation

As figure 406 shows,
the interaction between a structure chart action and

which

are received

none

the process_io relation documents
data
occurrs at the top of the box symbol for an

In this example, all data entity inputs or outputs

from or sent to the Get Total action entity.

of the data entities included in the ecxample
exit from the top of the Cet Total action entity,
not appear in the process_io relation. The

relationship betwecen the data entities and action entity Get

depicted iu the pr_passed relation which will be
later in this paper.

situation depicted in finure 40 is a rather simple
There are situations which may occur in the
chart representation in which the name of the data
would not

documented in the process_io relation

the corresponding structure chart diagram., Such a

is depicted in figure 47,

Get Total

Get Sum

01d TotalO\\Tn o

N L
\J,L(
Add

Figure 47, Structure Chart Diagra

124

Ve e T, P P T O A T, ST e T e T N e -
. . U R . A
B P . LRI IR ST SR I ST AP P A U S L S S PO |
(UK PR L NE P L RN DT WA WAL R PR, WAL P PP RIPE. LA, YR WO PP

1
\st Total 19/’ o7 Sunm
Deposit SN “~ ol

me

PR

POV

e

(R

' @

In the example depicted in ficure 47, the Add process
accepts as input two. data entities representing whole
numbers. The Add process will calculate the result of the
addition of these twvo numbers and output this result. The
structure chart depicted in figure 47 could be interpreted
in such a manner as to indicate that the process Add accepts
four inputs- Nol, Ho2, 01d Total, beposit- and crecates two
outputs, Sum and New Total. From a structure chart point of
view, this interpretation would be correcct. ffowever, the
data dictionary relation process_io is not interested in the
number of higher level processes which use the Add process
nor the names of the paranecters passed to and f{rom the
process from <calling processes. This information is
documented in the pr_call relation and the pr_passed
relation which will be discussed in the following sections.
The process_io relation documents the inputs needed and the
outputs produced by the Add process. I'n the situation
depicted in figurce 47, the tool user would neced to specify a
name for the twvo input nunbers and the output result which
intecract with the Add process. These names would be
different from anv of the nanes depicted in the structure
chart in fipure 47, This creation of namnes [or the input
and output parancters of process Add is needed to uniquely
identify the intertace characteristics of the process.

Il the situation as depicted on the structure chart in

figure 47 was documented in the process_io relation, it

125

N BRI RN
Lt L
e S

| RO

would give the erroncous conclusion that the Add process
required four input parameters to perform its function and
created two output paramcters.

A possible sect of process_io entries which would
correctly document the situation portrayed in figure 47 is
shown in figure 48.

It is important to remember that the situations
discussed previously represent problcms encountered in
representing the structure chart representation in the data
dictionary. The solutions dicussed for these problems
represent standard conventions which were established for
using the Data Dictionary Generation Tool and not standard
conventions which «can be applied to the Structurc Chart

method of software represcntation.

Process_I0 Relation

Project| Name| Pname |direction| Ptype | Class |order
Team 1 [Add Addendl | Tnput Data Local 1
Team 1 [Add Addend2 | lnput Data Local 2
Team 1 [Add Result Output Data lLocal 3

Figure 48, Process_I0 Exanple 2.

Pr_call Relation,

The pr_call relation depicts the use of or call to an
action entity by another action cntity, Often an action
entity, in performing its function, will use another action

entity to perform a calculation or other jobs. This is known

126

B L .__:- _'.J.‘;:..‘".._-.s e

P P L A S U R R R L . e R TR T
PP P R TIPS JPULI Sl WIE Wi NV Tl Sl Sl Sl S IS P URP Y BRP IR UMWl WAL YOy IR W UG ST A Dy DRI DA

A e aaaa b e Ah o &t b e dmtatata J

P
P S

i oai— ol alalale ol

v.wr‘vww- g

as a call by one action entity to another action entity.
The attributes which make up the pr_call relation are

displayed in figure 49,

Pr_Call Relation

Project Calling Calls

A
rl

¥ primary key

Figure 49. The Pr_Call Relation.

The project attribute identifies the person or group of
persons responsible for this entry in the data dictionary.
The calling attribute identifies the action entity or
structure chart process which enlists the aid or calls
another process in performing its function. The calls
attribute identifies the process wused by the process
identified in the calling attribute.

The primary key for this relation consists of a
combination of all attributes contained in the relation.
The project attribute is needed to differentiate betwveen
different softwarce projects contained in the data
dictionary. because a process can call more than one
process and a process can be uscd by more than one process,
both the «calling and calls attributes are necded in the
primary key to uniquely identify cach tuple in the pr_call
relation, Figure 50 provides an cxanple of a structure

chart diagram depicting the calling of processes by other

127

S L .

.

. S Te . .. Cte e P . P LT R N T T N L R AN . O A N U P S S S
P WL L LI AL S S S LS DL NI ST LD SIS I R S R RGP SIS R RO W NN e

A
:

rl v

A0 ot A o o0 4

.- - - - - - T T T T Ay % WY Yy e - —~— Ve YR W X T T - v

processes and how the pr_call relation would document the

situation.

Process A Process B

Process C Process D Process E

Pr_Call Relation

Project Calling Calls
Feaml A C '
Teaml A D
Teaml B D
o Teaml B tl

Figure 50. Pr_Call Relation Example,

Pr_Passed Relation.

The pr_passcd relation describes the data centites sent
to and returned from an action entity when il is called or
used by another action entity. The attributes which make up

the pr_passcd relation arec displayed in figure 51,

Pr_Passed Relation

Project } Name| Destination | Source | Order |P_Type| Class

¥ primary key

Figure 51. Pr_Passed Relation,

128

DR PR P R WA o S P . et L S e L TSt T T s s T T s T

(@

L N AL SR S PG, S I K T, VSR SRt Sl Wl N SU L AP P P TC I S PR P L L

The project attribute identities the person or group of
persons responsible for this entry into the data dictionary.
The name attribute identifies the data entity or parameter
which 1is being transfered in a call between two processes.
The destination attribute identifies the process which is
receiving the parancter identified in the name attribute.
The source attribute identifics the process from which the
parameter was transmitted or sent, The order attribute
indicates the order of this particular parameter among all
parameters involved in this call between two processes. The
p_type attribute indicates if the parameter being passed
represents flag or data information, The class attribute
indicates if the parameter identified in the name attribute
is returned by the called process to the calling process or
if the paramcter is passed from the calling procesé to the
called process.

A cowmbination of the values contained in the project,
name, destination, and source attributes serve to uniquely
identify cach tuple in the pr_passed relation. The project
attribute serves to differentiate between different projects
which are contained in the data dictionary. Because a
parameter may be passed from and pa